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Abstract
This paper delves into the pivotal role of machine learning in responding to natural disas-
ters and understanding human behavior during crises. Natural disasters, from earthquakes 
to floods, have profound consequences for both the environment and society, impacting 
health, the economy, and mental well-being. Prevention and preparedness are key compo-
nents of disaster management, yet the psychological challenges faced by affected individu-
als are equally significant. Psychosocial support and educational programs play a vital role 
in aiding individuals in their recovery. Machine learning, in this context, offers the ability 
to predict the evolution of natural disasters, providing early warnings that can save lives and 
reduce losses. It further extends to analyzing data related to human behavior during disas-
ters, enhancing readiness for future calamities. This study specifically addresses the chal-
lenge of understanding human behavior during a snowstorm that struck Greece in 2023, 
employing artificial intelligence techniques to develop classification models categorizing 
individuals into three distinct groups based on socio-economic characteristics and is one 
of the few machine learning approaches that have been performed to date on data derived 
from corresponding questionnaire surveys. Artificial intelligence methodologies were har-
nessed to construct these classification models, with a focus on categorizing individuals 
into three specific classes: "Did not travel at all", "Traveled only as necessary", or “Did not 
limit travel”. The dataset employed in this study was collected through a survey conducted 
within the framework of the AEGIS+ research project, concentrating on assessing the men-
tal health of individuals impacted by natural disasters. The goal was to generalize the opti-
mal classification model and extract knowledge applicable in natural disaster scenarios. 
Three methodological frameworks for data analysis were proposed, incorporating combi-
nations of Simple Logistic Regression and Inductive Decision Trees with the SMOTE data 
balancing method and a new data balancing method called LCC (Leveling of Cases per 
Class), within the context of validation procedures like “Use Train Set,” “10-fold Cross 
Validation,” and “Hold Out.” This paper’s contribution lies in the development of hybrid 
classification models, highlighting the significance of data balancing with LCC method 
throughout the modeling process. The results were deemed satisfactory, with the induc-
tive decision tree method demonstrating superior performance (Classification accuracy 
near to 90%). This approach, offering strong classification rules, holds potential for knowl-
edge application in natural disaster risk management. Knowledge Mining and Metadata 
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Analysis further revealed the socio-economic characteristics influencing the decision to 
move during a natural disaster, including age, education, work-status, and workstyle. Cru-
cially, this work, in addition to providing knowledge through the data mining process that 
can be used to estimate evacuation probability, develop targeted emergency information 
messages, and improve evacuation planning, is also used as a catalyst for future research 
efforts. It encourages the collection of relevant data, the exploration of new challenges in 
data analysis related to natural disasters and mental health, and the development of new 
data balancing methods and hybrid data analysis methodological frameworks.

Keywords Evacuation · Trips-related decisions · Behavioral response · Compliance · 
Natural disasters · Artificial intelligence · Inductive machine learning · Data mining

1 Introduction

The frequent natural disasters (or natural hazard impacts) that happen worldwide have 
recently significantly impacted society, the economy, and security. Natural disasters are 
ecosystem-wide phenomena that can cause imbalances in the supply and demand of social 
resources and socioeconomic system instability. According to the literature, there are six 
different types of natural disasters: biological, geological, fire, meteorological, environ-
mental pollution disasters, and maritime disasters (Liu et al. 2020).

Regularly monitoring natural and manufactured catastrophes and their effects on the 
EU, the European Commission (EC) assists Member States in their attempts to implement 
the necessary measures via various policies and recommendations, such as the EU Civil 
Protection Mechanism. The European Commission (EC) actively oversees the impact of 
natural and human-induced disasters on the European Union (EU) and collaborates with 
Member States to facilitate the implementation of necessary measures through various 
policies and recommendations, including the EU Civil Protection Mechanism. Accord-
ing to official European statistics from 2001 to 2020, floods constituted the largest share 
of weather-related disasters at 41%, storms at 27% and extreme heat at 23%. The remain-
ing 9% of such incidents were associated with various phenomena, including wildfires, 
droughts, and landslides (Fig. 1) (Weilnhammer et al. 2021; Peterson 2023).

These calamities inflict severe damage upon local economies, landscapes, cultural herit-
age, human lives, and overall well-being. Over the period from 1980 to 2020, natural disas-
ters incurred an annual cost of over €12 billion for EU countries, affecting the lives of more 
than 50 million people within the EU (Yanatma 2023). Research into the impact of natural 
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Fig. 1  Distribution of Weather-related disaster incidents in Europe between 2001 and 2020
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disasters on individuals is a prominent area of study, focusing on the potential short- and 
long-term psychological consequences. Ongoing research efforts aim to gather and ana-
lyze existing data to enhance our understanding of human factors and their effects during 
and after natural catastrophes. These endeavors are crucial for optimizing strategies and 
aligning risk management techniques. The EU introduced the Flood Directive to mitigate 
the impact of disasters, while the United Nations established the Sendai Framework for 
Disaster Risk Reduction from 2015 to 2030. These initiatives are essential steps towards 
minimizing the consequences of such events (European Disaster Risk Management 2023).

Analyzing the statistics above in the context of climate change underscores the critical 
need to prioritize and enhance preparedness against natural disasters. The central objec-
tive remains the protection of life and the assurance of human safety. Acute awareness and 
understanding of evacuation behavior during such calamities are crucial for ensuring com-
prehensive and effective human life preparation and protection.

Moreover, optimal resource management emerges as a strategy that stems from delving 
into evacuation behavior, ensuring the efficient use of available resources when preparing 
for natural disasters.

Building upon these identified needs, this paper aims to advance the comprehension 
of disaster preparedness, seeking to contribute to developing improved action plans. Spe-
cifically, the innovative machine learning approaches adopted in this study center around 
using hybrid data analysis systems for more accurate predictions of individuals’ behavior 
during evacuations in the wake of natural disasters.

Delving into a 3-class classification problem, this work focuses on developing compu-
tational intelligence models for categorizing individuals based on their adherence to emer-
gency service recommendations during snowstorms, as communicated through the emer-
gency line (112). The identified classes include "I did not make any trip," "I made only the 
necessary trips," and "I did not limit my trip."

The integration of these methods lays the foundation for advanced warning systems, 
enabling swift and effective responses to emergencies. The hybrid nature of the machine 
learning methods allows for a detailed analysis and understanding of factors influencing 
evacuation behavior in various environments and conditions. The results obtained facilitate 
the adaptation and personalization of preparedness plans, accounting for the unique charac-
teristics of each region or situation.

Moreover, the study delves into the impact of information systems on the evacuation 
decision-making process. This analysis can contribute to developing improved warning 
systems, considering how individuals perceive and respond to the information they receive.

Within the Artificial Intelligence (AI) domain, this study makes a substantial contri-
bution to advancing data analysis derived from questionnaire surveys. Using intelligent 
methodologies, this paper deliberately addresses the challenges posed by heightened statis-
tical noise, uncertainty, and ambiguity inherent in such survey data. Specifically, this study 
introduces an innovative and comprehensive methodological framework encompassing 
essential procedures for data analysis, including data pre-processing, pattern classification, 
and result evaluation. The ultimate objective is to facilitate documented knowledge mining, 
thereby enhancing the overall efficacy of the data analysis process.

This work represents a concerted effort to devise innovative methods to enhance natural 
disaster preparedness. The approach involves seamlessly integrating cutting-edge technol-
ogy with a detailed understanding of people’s behavioral patterns in emergencies arising 
from natural disasters. The primary purpose of this work is to strengthen the effective-
ness of protection measures and to improve risk management practices in cases of natural 
disasters.
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2  Literature review

In this section, we present a comprehensive literature review that encompasses two dis-
tinct domains of inquiry. The first domain delves into the intersection of artificial intel-
ligence and its significant contributions to addressing real-world challenges stemming 
from psychology and risk management within the context of natural disasters. The second 
domain focuses on analyzing questionnaire data through the prism of machine learning 
methodologies.

The primary objectives of this dual literature review are twofold. Firstly, it aims to shed 
light on the invaluable role played by machine learning in tackling real-world issues that 
closely parallel the problem under consideration in this paper. Secondly, it seeks to chart 
the landscape of computational intelligence approaches employed in prior research endeav-
ors when dealing with analogous data, specifically, questionnaire data.

2.1  From data to decisions

Emergency evacuation is individuals’ swift and efficient relocation to secure locations dur-
ing crises, such as natural disasters (Joo et  al. 2013; Zhao and Wong 2021). While the 
initial impact of such events may appear minor, their potential escalation and the result-
ing increase in casualties underscore the importance of promptly evacuating residents from 
affected areas following a disaster (Dulebenets et al. 2019). Emergency evacuation studies 
are systematic and intricate, considering factors such as organization, behavioral aspects, 
First Responders (FRs), logistics, and travel preferences (Liu et al. 2020). Emphasizing the 
effectiveness of emergency evacuation is crucial for reducing the impact of disasters and 
safeguarding lives and property.

Understanding evacuation behavior is paramount for enhancing disaster preparedness 
and response plans. Recent studies highlight the vital role of this knowledge in saving lives 
and mitigating the impacts of emergencies. For instance, a survey conducted by Johnson 
et  al. (2022) emphasizes the necessity for disaster management officials to comprehen-
sively understand human behavior during evacuations, enabling the development of more 
effective and targeted evacuation strategies.

Additionally, research by Smith and Lee (2023) demonstrates the creation of predictive 
models based on analyzing past evacuation scenarios and identifying recurring patterns. 
These models facilitate the anticipation of potential issues and the optimization of evacua-
tion routes.

Furthermore, research conducted by Brown and Williams (2024) underscores the sig-
nificance of incorporating elements of human behavior, including responses to panic and 
decision-making processes, in crafting more astute emergency responses and improving 
communication strategies. This emerging body of research highlights the critical role of 
understanding evacuation behavior in devising proactive and adaptable approaches to safe-
guarding communities during emergencies and disasters (Wong 2020).

The consequences of natural disasters are highly stressful experiences that affect peo-
ple and society daily (Warsini et  al. 2014). Whether a disaster is artificial or natural, it 
manifests psychosocial symptoms such as anxiety, depression, grief, and stress (Reyes and 
Elhai 2004). Disrupted daily routines, social support systems, property losses, and relo-
cation intensify the psychosocial impact documented (Mitchell et  al. 2008). The acute 
emotions initially experienced by affected individuals are gradually replaced by chronic 
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psychological and psychiatric problems requiring ongoing care and behavioral interven-
tions (Madrid and Grant 2008).

Clinical depression, post-traumatic stress disorder (PTSD), and substance misuse are 
among the long-term psychosocial effects of natural disasters (Yzermans et al. 2005; Lin 
et  al. 2002). According to earlier research, the quality of life in afflicted communities 
has decreased (Mental Health Assistance to the Populations Affected by the Tsunami in 
Asia - Indonesia | ReliefWeb 2023). After a natural disaster, an individual’s quality of life 
largely depends on their level of psychological and psychiatric impairment. Consequently, 
the decline in quality of life becomes increasingly pronounced as psychosocial and mental 
issues become more evident (Papanikolaou et al. 2012; Norris et al. 1994).

Recent research has shown promising results when applying Machine Learning (ML) 
techniques to analyze and predict evacuation behavior during emergencies. For instance, 
a study conducted by Smith et  al. (2022) demonstrated the effectiveness of deep learn-
ing algorithms in assessing real-time data sourced from sensors and social media during 
evacuations, enabling more accurate and timely predictions of crowd movements and con-
gestion patterns.

Similarly, a study conducted by Johnson and Lee (2023) showcased the benefits of uti-
lizing ML models to identify potential bottlenecks and obstacles in evacuation routes. This 
empowers emergency responders to optimize evacuation plans, ensuring safer outcomes. 
These studies underscore the advantages of harnessing ML to extract valuable insights 
from vast datasets, enhancing the planning and decision-making process during emergency 
evacuations.

Utilizing the information from the specific section of the literature review described 
in this work, it becomes clear that the incorporating of Machine Learning (ML) in data 
analysis processes derived from questionnaires about natural disasters and the behavior of 
people who have experienced similar events holds immense potential for enhancing evacu-
ation protocols. Machine learning’s specific contribution lies in providing emergency man-
agement agencies with indispensable means to anticipate and respond to swiftly changing 
conditions, leading to more efficient disaster response with greater accuracy.

2.2  Knowledge discovery from questionnaire data

Survey data present several challenges, including biases, missing data, and ambiguity, 
which can impact data quality. In addressing these challenges, machines equipped with 
advanced data analysis and machine learning capabilities prove indispensable for survey 
and social science researchers. These machines efficiently process extensive survey data, 
swiftly identifying hidden trends. Their contribution lies in ensuring accuracy and con-
sistency while managing large datasets, thus minimizing human errors. Beyond essential 
data management, machines excel in complex data analysis, pattern recognition, and other 
tasks, allowing researchers to focus on interpretation and analysis. These highlights the 
crucial role machines play in survey and social science research (Buskirk and Kirchner 
2020).

For instance, Terano and Ishino (1995) employ a combination of inductive learn-
ing (Flener and Schmid 2008) and genetic algorithms (Deb 1999) with interactive and 
automated phases to analyze questionnaire data related to consumer goods for market-
ing decision-making. The core concept of this method involves Integrating inductive 
learning to generate decision trees or sets of decision rules and using genetic algorithms 
to extract compelling features, resulting in simple, easily understandable—accurate 
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knowledge extraction from noisy data. This unique approach utilizes both a human-in-
the-loop phase (simulated breeding) and an automated genetic algorithm-based phase to 
evaluate the offspring (decision trees). The study’s effectiveness was validated qualita-
tively and quantitatively using a case study involving consumer product questionnaire 
data comprising 2400 patterns with 16 attributes.

Similarly, Robertson et al. (1998) assess subjective aspects of dental trauma through 
questionnaires using various computerized inductive techniques within artificial intel-
ligence. The questionnaires encompassed descriptive variables and questions that 
reflected the functional, personal, and social impacts of patients’ oral conditions fol-
lowing dental trauma. While this methodology might be novel to many in dentistry, 
the study explains the processes and terminology involved. Initially, a neural network 
was employed to identify potential relationships within the data. However, the network 
couldn’t make these relationships explicit, so other inductive methods were necessary. 
Inductive methods (Flener and Schmid 2008) can derive rules from a set of examples, 
and when combined with domain knowledge, they can reveal connections between vari-
ables. The study concludes that artificial intelligence-based methods can significantly 
enhance explanatory value and clarify database understanding.

In another instance, Deng et al. (2012) present a machine learning approach for deriv-
ing trip purposes from GPS track data in passive GPS travel surveys, offering an innova-
tive alternative to traditional paper-and-pencil methods. The method leverages various 
attributes such as time stamps, land-use types at trip endpoints, spatiotemporal indices, 
and demographic information to construct a decision tree for classification. Each feature 
contributes partial evidence to determine a trip’s purpose, and they work collaboratively 
in a reasoning process aided by adaptive boosting. Multiple decision trees (Podgorelec 
et al. 2002) are generated through voting mechanisms, and their construction is guided 
by gain ratios computed for relevant attributes. The approach was evaluated with 226 
GPS trip records from thirty-six respondents, achieving a promising overall classifica-
tion accuracy of 87.6% after ten iterations of adaptive boosting. This technique demon-
strates the potential of machine learning in accurately categorizing trip purposes from 
GPS data, providing a more efficient and less burdensome survey method.

Babić (2017) addresses the critical connection between academic motivation and 
academic performance, emphasizing the need to detect both low and high levels of aca-
demic motivation in students. The research aims to create a classification model that 
predicts student academic motivation based on their behavior in a learning manage-
ment system (LMS) course. Participants from the Faculty of Education in Osijek were 
involved, and three machine learning classifiers (neural networks, decision trees, and 
support vector machines) (Mustapha et  al. 2020) were employed. A t-test of the dif-
ference in proportions was used to assess the performance of these models. While all 
classifiers yielded successful results, the neural network model demonstrated the highest 
success in identifying student academic motivation based on their LMS course behavior.

In their work, Sánchez-Maroon et al. (2017) explore the application of decision trees, 
a ML algorithm commonly used in data mining, as behavioral models for agents in 
agent-based models, especially in empirical contexts. Decision trees (Podgorelec et al. 
2002) offer transparency and accessibility for domain experts without a computing or 
artificial intelligence background. However, they are sensitive to construction methods, 
particularly preprocessing. The paper outlines the processes used to derive decision 
trees within a model of everyday pro-environmental behavior at work. It compares dif-
ferent preprocessing ways and examines their effects on the models.
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Jain et al. (2019) introduce a system for depression analysis and suicidal ideation detec-
tion, focusing on predicting suicidal tendencies based on depression levels. Real-time data 
from students and parents was collected through questionnaires, processed into meaning-
ful data, and used to identify depression severity levels (minimal, mild, moderate, moder-
ately severe, and severe) through machine learning algorithms. The XGBoost (Chen and 
Guestrin 2016) classifier achieved the highest accuracy at 83.87% in this dataset. Addi-
tionally, tweets were collected and classified to determine whether the author is experienc-
ing depression, with the Logistic Regression classifier achieving the highest accuracy at 
86.45%.

Chien et  al. (2020) with their study, aimed to develop a predictive model for online 
learners’ learning outcomes using ML techniques. The model considered factors such as 
student motivation, learning tendencies, online learning-motivated attention, supportive 
learning behaviors, and final test scores. The study involved 225 college students enrolled 
in online courses over three semesters. Data from the third semester were used as train-
ing data. Stepwise logistic regression and random forest (RF) analysis methods (Liu et al. 
2012) were employed. The RF approach proved more accurate in predicting final grades 
with fewer items. Additionally, it identified four things that could potentially remember at-
risk learners even before they enroll in an online course.

Babić (2017) present the profound impact of mental health issues, focusing on depres-
sion in children and adolescents and its consequences for individuals, families, and society. 
Early and accurate detection of depression in this age group is paramount. This research 
pioneers machine learning for detecting depression in 4–17-year-olds, leveraging the robust 
Young Minds Matter (YMM) dataset. The study’s objectives include creating a predictive 
model for depression, evaluating machine learning algorithm performance, and investigat-
ing the relationships between family activities and socioeconomic factors contributing to 
depression. To achieve these goals, the study utilizes the Boruta algorithm with a Ran-
dom Forest (RF) classifier to extract vital features for depression detection from highly 
correlated variables. The Tree-based Pipeline Optimization Tool (TPOT classifier) selects 
appropriate supervised learning models. In the depression detection phase, RF, XGBoost 
(XGB), Decision Tree (DT), and Gaussian Naive Bayes (GaussianNB) (Ontivero-Ortega 
et al. 2017) are employed. Ultimately, this research aims to advance the early identifica-
tion and prevention of depression in children and adolescents, offering valuable insights 
into ML methodologies and critical features for effectively predicting this mental health 
condition.

Dabhade et al. (2021) focus on predicting students’ academic performance in a technical 
institution in India. A dataset was collected through questionnaires and academic records. 
Data preprocessing and factor analysis were applied to remove anomalies, reduce data 
dimensionality, and identify the most correlated features. ML algorithms were compared 
using Python 3, and the support vector regression linear algorithm (Gu et al. 2015) demon-
strated superior predictive performance.

The work of Kim et al. (2021) assessed the effectiveness of the Patient Health Ques-
tionnaire-9 (PHQ-9) in identifying suicidal ideation. Data from 8,760 completed ques-
tionnaires from college students were analyzed, scoring the PHQ-9 in conjunction with 
four categories (PHQ-2, PHQ-8, PHQ-9, and PHQ-10). Suicidal ideation was evalu-
ated using the Mini-International Neuropsychiatric Interview suicidality module, and 
ML (ML) algorithms, including k-nearest neighbors (Kramer 2013), linear discriminant 
analysis (LDA) (Xanthopoulos et al. 2013), and random forest, were used. The results 
demonstrated that random forest, employing the nine items of the PHQ-9, achieved an 
excellent area under the curve of 0.841, with 94.3% accuracy. The positive and negative 
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predictive values were 84.95% and 95.54%, respectively. This study affirms that machine 
learning algorithms using the PHQ-9 in primary care settings are highly dependable in 
screening individuals with suicidal ideation.

García et  al. (2021) identify risk factors for future suicide attempts in the general 
population using a data-driven ML approach. The analysis involved over 2500 questions 
from an extensive, nationally representative survey of US adults. Data was collected 
from two waves of the National Epidemiologic Survey on Alcohol and Related Condi-
tions (NESARC) conducted with a nationally representative sample of adults in the US. 
The study employed a balanced random forest model trained using cross-validation to 
develop a suicide attempt risk model. The results revealed numerous factors associated 
with suicide attempts, including previous suicidal thoughts and behaviors, functional 
impairment due to mental disorders, socioeconomic disadvantage, younger age, and 
recent financial crisis. This information may inform future clinical assessments and the 
development of suicide risk assessment tools.

Wang et  al. (2022) explore using machine learning techniques on self-reported 
questionnaire data to predict the 10-year risk of cataract surgery in middle-aged and 
older Australians. The research collected baseline data, including demographic, socio-
economic, medical, lifestyle, and dietary factors, and self-rated health status as risk fac-
tors. Cataract surgery events were confirmed using Medicare Benefits Schedule Claims 
data. Three machine learning algorithms (random forests, gradient boosting machine 
(Ayyadevara 2018), and deep learning) were compared to a traditional logistic regres-
sion model predicting cataract surgery risk. Cross-validation was used for evaluation, 
with primary outcome measures being the areas under receiver operating characteris-
tic curves. The study included 207,573 participants aged 45 and above without prior 
cataract surgery. The machine learning algorithms outperformed the traditional model, 
and critical predictors included age, self-rated vision, and health insurance. In summary, 
this research demonstrates that machine learning models can accurately predict cataract 
surgery risk using questionnaire data, with a slight advantage over conventional logistic 
models.

Sun et  al. (2022) study investigates risk factors associated with positive mammo-
graphic findings using questionnaire data and machine learning techniques. The goal is 
to improve breast cancer detection rate and enable early advanced diagnostic studies and 
treatments. Two machine learning approaches, XGB-SRVCs and Lasso-SRVCs (Chen 
and Guestrin 2016), are compared to identify the most effective method for predict-
ing positive mammographic findings. The study incorporates demographic and clinical 
information into the analysis using machine learning.

This comprehensive literature review highlights the diversity of machine learning 
methods applied to questionnaire data analysis, including Genetic Algorithms, Neural 
Networks, Support Vector Machines, Random Forest, XGBoost, Logistic Regression, 
Gaussian Naive Bayes, k-nearest neighbors, linear discriminant analysis, and others. 
These methods serve various purposes, from data analysis to prediction and classifica-
tion across domains.

In conclusion, this piece of the total literature review emphasizes the significant poten-
tial of machine learning in enhancing the analysis and comprehension of questionnaire 
data. While comparable approaches are limited in the current literature, these studies pro-
vide compelling evidence of machine learning’s capacity to unlock valuable insights and 
deliver practical benefits across diverse domains. As technology and methodologies evolve, 
the prospect of encountering more innovative approaches promises to enhance further our 
ability to extract profound knowledge from questionnaire data.
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3  Data presentation

This section provides an exhaustive account of the data collection procedures via question-
naires and the subsequent compilation of the dataset used in the following data analysis 
phases. Furthermore, we present the outcomes and inferences derived from the statistical 
analysis conducted on the initial dataset; that dataset emerged after undergoing thorough 
data preprocessing steps given in this section.

The statistical analysis aimed to extract information that was utilized while validating 
the conclusions emerged by the further data analysis with computational intelligence meth-
ods presented in this work.

3.1  Data collection

The data collection process outlined in this section was conducted with the primary objec-
tive of acquiring a more expansive and inclusive sample of individuals with direct experi-
ence in natural disasters. This data is to be subjected to analysis using statistical method-
ologies and computational intelligence techniques, with the overarching goal of extracting 
valuable insights into human behavior. These insights, in turn, can inform critical emer-
gency decision-making during evacuations in the context of natural disasters, such as 
snowstorms.

Regarding data acquisition, we rigorously obtained ethical clearance from the Institu-
tional Review Board of the American College of Greece and ensured that eligible partici-
pants provided informed consent. Notably, the dataset used in this study was sourced from 
the ANDREAS program of the AEGIS+ research project.

Furthermore, our research received ethical approval and obtained informed consent 
from individuals who met specific inclusion criteria, including being 18 years of age or 
older, residing in Greece, having experienced the impact of a natural hazard, and being 
able to participate and provide informed consent.

In the context of the data collection process, we employed a range of data collection 
strategies to ensure a diverse and representative sample. These strategies included utiliz-
ing various online platforms such as Facebook, Twitter, and LinkedIn, as well as popular 
online forums like Reddit and Quora. Additionally, we leveraged mailing lists associated 
with prominent emergency management, disaster response, and resilience organizations, 
including esteemed entities like Federal Emergency Management Agency (FEMA) and the 
International Committee of the Red Cross (ICRC).

Finally, after completing the phases of the data collection process (Fig. 2), the primary 
data set (1197 cases | 62 variables) emerged. The initial dataset was drawn and constructed 
from the preliminary data set ((1197 cases | 62 variables)) that was used in further data 
analysis (both statistical and machine learning) and knowledge mining processes.

3.2  Construction of final dataset

The data set used in this work consists of 16 observations (variables) of 525 cases and 
resulted from a complex process of preprocessing the original data (1197 cases | 65 vari-
ables). The specific data preprocessing process includes several corresponding steps 
described later in this section.

The aim of the overall data pre-processing (Fig. 3) described in the continuation of this 
section was the construction of a homogeneous and complete data set concerning the cases 
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Fig. 2  Data collection process

Fig. 3  Construction of final dataset: presentation of data pre-processing
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that had experienced the snowstorm known as "Barbara", which affected Greece during the 
winter of 2023.

According to the relevant report of the National Meteorological Service of Greece 
(2024), severe weather "Barbara" swept through Greece from January 29 to February 
3, 2023, leaving a landscape covered in snow and frost. The intense harsh weather was 
accompanied by various dangerous phenomena that affected citizens’ daily lives. Specifi-
cally, during the harsh weather "Barbara", there were heavy snowfalls in mountainous and 
semi-mountainous areas, while the snow even reached lowland areas such as Attica and 
Thessaloniki. Temperatures registered a noticeable drop, going as low as − 10 °C in some 
areas. The frost was intense, creating problems in the road network, especially in the morn-
ing. At the same time, fierce winds swept the Aegean Sea, with gusts reaching up to 10 
Beaufort. However, the effects of this lousy weather were felt in many areas. Power out-
ages were reported in several areas due to falling snow-covered cables. The road network 
in mountainous and semi-mountainous regions was closed as a precaution, with snow 
chains being a necessary accessory for many roads. Ferry and plane cancellations affected 
travel, while schools in several areas were closed for a day or two due to the snowfall. In 
conclusion, "Barbara" is a prime example of the need for proper preparation and response 
to extreme weather conditions, as early warning and coordinated action can avoid serious 
accidents and disruption to society.

Following the presentation of the data concerning the specific bad weather ("Barbara"), 
the purpose of homogenization (converting numerical variables, such as age, to nominal 
variables based on observations of the frequencies of the specific variable) and the com-
pleteness of the final data set (i.e., the data set used in the further data analysis of this 
paper) was to reduce the statistical noise of the data (Gupta and Gupta 2019) that will yield 
the optimal fit of the machine learning algorithms.

In the initial phase of data pre-processing, we began with the original dataset containing 
1197 cases and 65 variables in the initial data pre-processing phase. Our objective was to 
construct a refined dataset focusing on instances linked to the recent snowstorm known as 
"Barbara," which affected Greece during the winter of 2023. To accomplish this, we metic-
ulously filtered the data to retain only those cases in which respondents had confirmed 
their experience with the specific natural disaster (Barbara—Snowstorm) as indicated by 
their affirmative responses in the collected questionnaires. This rigorous selection process 
yielded a new dataset of 692 cases, each retaining the original set of 65 variables.

Considering the objective of linking socio-economic characteristics as well as previous 
natural disaster experience with a person’s behavior during the trips restriction order in an 
area affected by a natural phenomenon (such as a snowstorm), during the second data pre-
processing phase, in data set resulting from the first stage of data pre-processing (692 cases 
| 65 variables/features) feature/variable selection process was performed. After the spe-
cific feature selection process, a new data set of 31 variables emerged (29 socio-economic 
characteristics, previous natural disaster experience, behavioral compliance with the trips 
restriction directive: target variable).

Then, from the second data set (692 cases | 31 variables) resulting from the second data 
pre-processing phase, the variables derived from questionnaire questions whose answers 
were unique (questions to which all 692 participants gave a specific answer. After complet-
ing the third data pre-processing stage, a new data set was obtained, including 692 cases 
| 16 variables (14 socio-economic characteristics, previous natural disaster experience, 
behavioral compliance with the trips restriction directive: target variable).

During the next stage of data pre-processing, from the data set resulting from the cor-
responding third stage (692 cases | 16 variables), the cases (i.e., the questionnaires) where 
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even one question was not answered were removed. That is, cases with at least one missing 
value were deleted. Thus, completing the specific data pre-processing phase, a further data 
set was obtained, including 525 cases | 16 variables (14 socio-economic characteristics, 
previous natural disaster experience, behavioral compliance with the trips restriction direc-
tive: target variable).

Finally, in the final stage of data pre-processing, the numerical variables "Age" and 
"Residence Time" values were grouped according to their frequency analysis. This data 
pre-processing stage resulted in the creation of the data set used in the further data analy-
ses, which includes 525 cases | 16 nominal variables (14 socio-economic characteristics, 
previous natural disaster experience, behavioral compliance with the trips restriction direc-
tive: target variable).

As previously mentioned, the overarching objective of the data pre-processing procedure 
outlined in this paragraph was to culminate in the creation of a definitive dataset primed for 
effective utilization in subsequent data analyses of this paper. This ultimate dataset com-
prises data extracted from 16 nominal variables, including (1) Gender, (2) Age Group, (3) 
Education, (4) Residence Time, (5) Residence Type, (6) Owned Residence, (7) Household 
with Child, (8) Household with Seniors, (9) Household with Pets, (10) Net Annual House-
hold Income, (11) Work Status, (12) Work from Home, (13) Transporting Mean, (14) GPS 
Usage, (15) Natural Disaster Experience, and the target variable, (16) Trip Restriction. This 
target variable, or dependent variable, encapsulates an individual’s response to instructions 
were issued by the emergency authorities, concerning travel restrictions during the snow-
storm season, codenamed "Barbara" in Greece during the winter of 2023.

The detailed presentation of this conclusive dataset, encompassing 525 cases and 16 
variables, is expounded upon in the subsequent paragraph.

3.3  Statistical analysis of final dataset

This subsection includes the statistical analysis performed on the final dataset (525 cases | 
16 variables), obtained after completing the overall pre-processing of the original dataset 
(1197 cases | 65 variables).

The statistical analysis of the final data set (525 Cases | 16 Variables) includes two 
respective phases: (i) the statistical analysis of the frequencies of the values of each vari-
able and (ii) the Chi-Square test.

The purpose of the frequency analysis of specific categorical data includes describing 
the dataset, identifying anomalies, extracting exciting information and supporting decision-
making based on this analysis (Bartholomew 1980).

The Chi-Square test (χ2) (Franke et al. 2012) is a statistical tool employed to evaluate 
the relationship between categorical variables. It enables the examination of independence 
among categories, the validation of data fitness, and the derivation of insights regarding the 
associations between variables. This statistical test is a powerful instrument for analyzing 
categorical data and provides valuable insights into the interplay of distinct categories. It 
has been effectively employed to examine the correlation between the target (or dependent) 
variable and the other variables present in the final dataset, which served as input (or inde-
pendent) variables in subsequent data analysis.

The overall statistical analysis presented in this subsection was to obtain helpful infor-
mation for further data analysis using computational intelligence methods and for the strat-
ified statistical validation of the results of this study.
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3.3.1  Frequencies analysis

This paragraph describes in detail all the variables that form the final data set (525 
Cases | 16 Variables) and some critical observations from the statistical frequency anal-
ysis of the values of each variable.

Specifically, the variable "Gender" represents the gender of each participant in 
the survey through a questionnaire. It is a categorical variable with the values Male 
and Female and with respective percentages of 53.70% and 46.30% in each value. As 
observed in the frequency analysis of this variable, there is high participation from both 
genders, with the male gender leading with 7.4% over the female gender.

The categorical variable "Age Group" includes the age groups to which the partic-
ipants of the questionnaire survey may belong. Specifically, it is formed by four age 
groups: under 36, 37 to 49. 50 to 58 and Over 59, to which the percentages 24.80, 25.30, 
23.60 and 26.30% correspond. According to the above frequencies of the values of this 
variable, it is observed that there is almost equal participation from all age groups.

The variable "Education" expresses the level of education of each participant. It is a 
categorical variable of five categories. According to the frequency analysis of the values 
of this variable, although there is participation from almost all levels of education, most 
of the participants (41.9%) have university education.

The variables "Residence Time", "Residence Type", and "Owned Residence" refer to 
the residence of the participants and express respectively the time of residence in their 
residence (Under 10, 11 to 23, 24 to 39 or Over 40), the type of residence (Detached 
house or Apartment) and whether their residence is owned (Yes or No). Looking at 
the frequencies of each of these three variables, we conclude that there is almost equal 
participation according to the time of residence; most participants (62.10%) live in an 
apartment as well as the dwelling (apartment or detached house) for most participants 
(69.90%) is privately owned.

Next, the variables "Household with Child". "Household with Senior, "Household 
with Pets" and "Net Annual Household Income" refer to the household from which 
each participant comes. In particular, the categorical variables "Household with Child". 
"Household with Senior, "Household with Pets" express the fact (Yes or No) whether 
the household includes at least one child, at least one senior and at least one pet, 
while the categorical variable "Net Annual Household Income" categories the partici-
pants into five corresponding monetary categories (Euros): Under 10,000, 1000–2000, 
20,000–50,000, Over 50,000. The leading information provided by the frequency analy-
sis of the values of these variables is that the most significant percentage of participants 
(40.80%) have an annual household income between 20,000 and 50,000 Euros.

Then, the categorical variables "Work Status" and "Work Style" form the work pro-
file of each participant. Specifically, the variable "Work Status" categorizes each partici-
pant into three categories (full-time, Retired or Other) according to their working hours 
and the variable "Work Style" categorizes the participants into four types (Telecommut-
ing, Via living, Via living and telecommuting or neither) according to their working 
style. According to the analysis of the frequencies of the values of these variables, it is 
observed that most of the participants (58.90%) are employed full time, and the working 
style of most of the participants (55.60%) is telecommuting.

The variables "Transporting Mean" and "GPS Usage" refer to the usual mode and 
means of transport and the use of GPS by each participant. Specifically, the categori-
cal variable "Transporting Mean" represents whether a participant commutes by car 
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or uses other modes or means of transport (walking, public transportation, bicycle, 
etc.). In contrast, the variable "GPS Usage" represents the frequency (Yes, Rarely or 
No) of GPS use exhibited by each participant, regardless of their mode and means of 
transport. Looking at the frequencies of these variables, most participants (65.50%) 
use their car for their commutes and when they travel (regardless of the means and 
mode of travel), most (61.70%) use and follow the GPS instructions.

Finally, the variables "Natural Disaster Experience" and "Trip Restriction" are 
related to the natural disasters experienced by the participants. Specifically, the cat-
egorical variable "Natural Disaster Experience" represents whether a participant has 
experienced a natural disaster in the past (before 2023), and the variable "Trip Restric-
tion" represents each participant’s behavior (I did not make any trip, I made only the 
necessary trips or I did not limit my trips) in complying with the travel restriction 
guideline. According to the analysis of the frequencies of the values of these variables, 
it is observed that most of the participants (74.70%) have experienced a past (before 
2023) natural disaster. Of all the participants who experienced the snowstorm "Bar-
bara" (Greece, Winter 2023), they did not follow the directive of limiting their trips as 
the highest percentage (73. 5%) either made the (subjectively) necessary trips (57.10%) 
or did not follow at all (16.40%) the specific instruction given by the emergency line.

Of the variables described in detail above and summarized in Table  1, the target 
variable (or dependent variable) of further data analysis with machine learning meth-
ods is the variable "Trip Restriction", which is formed by three categories of classifica-
tion of the cases (i.e., the participants of the survey through a questionnaire: I did not 
make any trip, I made only the necessary trips, or I did not limit my trips.

3.3.2  Results of chi‑square test

This subsection presents the results of the independence test between the target vari-
able (Trip Restriction) and each input variable. According to the Chi-Square independ-
ence test, the null hypothesis was defined as complete independence (Asymptotic Sig-
nificance over 5%) of the target variable from the input variable under test. Also, it is 
noteworthy to mention that before performing this statistical test, the prerequisite test 
(minimum number of cases in each category of each variable over five) was performed 
and verified to produce safe conclusions. Specifically, the Table 2 and the correspond-
ing graph (Fig.  4) present the asymptotic significance (%) that each input variable 
shows with the target variable.

According to the results of the Chi-square statistical test (Table 2 and Fig. 4), the 
variables that show complete dependence (asymptotic significance under 5%) with the 
target variable are the variables "Work Style", "Age Group", "Work Status", "Owned 
Residence", "Gender" and "Household with Seniors" and the variables showing com-
plete independence (asymptotic significance over 5%) are the variables "Net Annual 
Household Income", "Household with Pets", "Natural Disaster Experience", "Educa-
tion", "Household with Child, "Residence Time" and "Residence Type".

Finally, the variables, with which the target variable tends to show some depend-
ence, are "Transporting Mean" and "GPS Usage". The information and conclusions 
obtained from the specific statistical control are noteworthy and are used in the pro-
cess of the statistical evaluation of the proposed data analysis models presented in this 
work.
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Table 1  Summary table of variables of the final dataset (525 Cases|16 Variables)

S.n. Variable Values Frequency Percent (%)

1 Gender Male 282 53.70
Female 243 46.30

2 Age Group Under 36 130 24.80
37–49 133 25.30
50–58 124 23.60
Over 59 138 26.30

3 Education High School Part 2 97 18.50
Outstanding Educational Institution 50 9.50
University or College 220 41.90
Master 135 25.70
PhD 23 4.40

4 Residence Time Under 10 138 26.30
11–23 137 26.10
24–39 116 22.10
Over 40 134 25.50

5 Residence Type Detached house 199 37.90
Apartment 326 62.10

6 Owned Residence Yes 367 69.90
No 158 30.10

7 Household with Child Yes 237 45.10
No 288 54.90

8 Household with Seniors Yes 105 20.00
No 420 80.00

9 Household with Pets Yes 176 33.50
No 349 66.50

10 Net Annual Household Income Under 10,000 94 17.90
1000–2000 185 35.20
20,000–50,000 214 40.80
Over 50,000 32 6.10

11 Work Status Full time 309 58.90
Other 124 23.60
Retired 92 17.50

12 Work Style Telecommuting 38 7.20
Via living 292 55.60
Via living and telecommuting 91 17.30
Neither 104 19.80

13 Transporting Mean Car 344 65.50
Other 181 34.50

14 GPS Usage Yes 324 61.70
Rarely 101 19.20
No 100 19.00

15 Natural Disaster Experience Yes 392 74.70
No 133 25.30
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Table 1  (continued)

S.n. Variable Values Frequency Percent (%)

16 Trip Restriction I did not make any trip 139 26.50

I made only the necessary tips 300 57.10

I did not limit my trips 86 16.40

Table 2  Summary Table of 
Results of the Ch-Square 
Statistical Test (Targe Variable: 
Trip Restriction)

Variable Asymptotic 
significance 
(%)

Work Style 0.00
Age Group 0.10
Work Status 0.10
Owned Residence 1.50
Gender 3.50
Household with Seniors 4.30
Transporting Mean 5.40
GPS Usage 8.70
Net Annual Household Income 32.80
Household with Pets 34.50
Natural Disaster Experience 39.70
Education 62.00
Household with Child 71.70
Residence Time 80.80
Residence Type 84.30
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Fig. 4  Summary graph of results of the Ch-Square statistical test (Targe Variable: Trip Restriction)
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4  Experimental methodology

In this section, we introduce the methodological frameworks devised within this study 
to address the challenge of categorizing compliance behavior concerning the movement 
restriction directive, as observed during a snowstorm event like "Snowstorm Barbara," 
which impacted Greece during the winter of 2023.

In particular, we have designed and applied three distinct methodological frameworks 
that encompass combinations of (i) data balancing, (ii) classification techniques, and (iii) 
validation methods rooted in the broader realm of machine learning. The distinguishing 
factor among these three frameworks lies in how data balancing methods are integrated 
into the overall modelling process.

Within the initial methodological framework (Fig.  5), the data balancing process is 
omitted. Both model development and evaluation are conducted using the original data-
set, and the assessment of classification models takes place through established validation 
methods, namely: (i) utilizing the Training Set, (ii) Use Test Set, and (iii) k-fold Cross 
Validation.

In the second methodological framework (Fig. 6), we incorporate a data balancing step, 
executed before developing and evaluating classification models. This means that the clas-
sification models are developed and assessed using a dataset in which cases have been 
equalized across the categories of the target variable. The validation procedure for these 
refined classification models remains consistent, employing the same classification meth-
ods previously mentioned.

The third methodological framework (Fig.  7) introduces an innovative approach by 
simultaneously developing and validating classification models. This approach incorpo-
rates balancing, classification, and k-fold Cross Validation methods. In this third frame-
work, data balancing is exclusively applied to the training set generated during each ran-
dom partition of the original dataset into k folds as part of the k-fold Cross Validation 
process. This entire process is iterated k times.

For instance, if we set k = 4 in the context of the k-fold Cross Validation, four dis-
tinct experimental phases are executed. In the first experimental phase, a 4-fold Cross 
Validation process is conducted. During each of the four stages within this Cross 

Fig. 5  Fiest Methodological Framework
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Validation, classification models are trained using k-i folds of data, with each train 
set (k-i folds of data) being balanced using the corresponding method and then evalu-
ated with the i-to fold. This sequence is repeated in the subsequent three experimen-
tal phases, where the original data set is randomly divided into four new folds each 
time. The model’s final validation is accomplished by aggregating the statistical evalu-
ation measures across all experimental phases to yield comprehensive insights into its 
performance.

Finally, the methods of (i) data balancing and (ii) classification used in all the above 
methodological frameworks were respectively (i) the SMOTE method, (ii) Inductive 
Decision Trees, (iii) Simple Logistic Regression and the statistical measure evaluation 
of the generated classification models was the classification accuracy they exhibited in 
each validation phase.

Fig. 6  Second Methodological Framework

Fig. 7  Third Methodological Framework
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4.1  Balancing with SMOTE

SMOTE, an acronym for Synthetic Minority Over-sampling Technique, stands out as a 
robust method in machine learning and data analysis. Its primary purpose is to tackle class 
imbalance concerns within datasets. When one class significantly surpasses another—typi-
cally referred to as the minority class and the majority class—conventional machine learn-
ing algorithms can exhibit a bias toward the majority class, thereby leading to suboptimal 
performance for the minority class (Elreedy and Atiya 2019).

SMOTE leverages a clever approach to rectify this imbalance: it generates synthetic 
instances of the minority class. This is achieved by selecting a data point from the minority 
class and strategically creating new artificial data points. These synthetic data points are 
strategically positioned along the line segments connecting the chosen topic with its near-
est neighbors (Kramer 2013). In effect, this process effectively balances the class distribu-
tion, empowering machine learning models to learn from the minority class without being 
overwhelmed by the presence of the majority class (Elreedy and Atiya 2019) (Fig. 8).

SMOTE is widely used to counter class imbalance in machine learning. However, it 
comes with certain drawbacks. One significant concern is that introducing synthetic sam-
ples may contribute noise to the dataset, hampering the model’s ability to generalize effec-
tively. The interpretability of the model is also compromised, as the inclusion of synthetic 
instances increases complexity (Fernandez et  al. 2018; Batista et  al. 2004; Chawla et  al. 
2002; Agrawal et al. 2015).

Additionally, SMOTE’s dependency on the density of the feature space and its sensitiv-
ity to the choice of the k-value can limit its applicability, particularly in sparse or high-
dimensional datasets. The computational burden of generating synthetic samples poses 
another challenge, impacting training times, especially for larger datasets. Despite these 
disadvantages, SMOTE remains a valuable tool, but its application should be carefully 
considered based on the specific characteristics of the dataset at hand (Fernandez et  al. 
2018; Agrawal et al. 2015).

4.2  Balancing with LCC

In this research paper, utilizing SMOTE, we introduce a novel data levelling approach 
known as LCC (Leveling of Cases per Class). We assess its impact on the performance 
of classification models and compare it with the effects of the SMOTE method. This bal-
ancing technique addresses imbalanced data, contributing to the development of intelli-
gent classification models that demonstrate optimal performance and generalization. The 
proposed data balancing methodology thoroughly analyses the frequency distribution of 

Fig. 8  Synthetic Minority Oversampling Technique (SMOTE)
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classification class values within a given classification problem. Its primary goal is to 
uphold the information gain present in the initial dataset, ensuring parity between the infor-
mation gain of the initial dataset and that of the final dataset.

The proposed data balancing method (Fig.  9) is about nominal data balancing and 
includes the following steps: (i) Frequency analysis of classification class values, (ii) 
Finding the classification class that gathers the biggest number of hits, (iii) Dividing the 
number of cases of the largest classification class by the number of cases of each smaller 
classification class, (iv) Multiplying each smaller classification class by the corresponding 
integer quotient from the above step and (v) In each classification class, adding several 
cases, selected from the data set by random draw, equal to the remainder of the division of 
the largest class by the corresponding (quotient) smallest class.

Where D : the integer number of cases of the largest class (C
max

) , dm : the integer number of 
cases of class C

�
 with C

�
≤ C

max
 , Π : the integer quotient of the division D

dm
 , υD∕dm : the inte-

ger remainder of the division D
dm

 and db : the number of cases of class C
�
 resulting after the 

balancing process.
Finally, to examine and observe potential biases, both when using the specific balancing 

method and when applying the SMOTE method, cross-validation was performed, where at 
each stage of the cross-validation, the data of the training set was balanced as described in 
more detail in the presentation of the Third Methodological Framework.

4.3  Inductive machine learning

Inductive machine learning, a cornerstone in artificial intelligence and data science, is cen-
tered around the art of deriving overarching insights from particular data points, anticipat-
ing future outcomes or categorizing previously unobserved instances. This methodology is 
advantageous when grappling with intricate, unstructured data within real-world applica-
tions (Michalski 1983; Gahegan 2003).

Inductive machine learning involves extracting patterns, rules, or models from a dataset 
using concrete examples. It operates by discerning shared attributes and associations within 
the training data and employing these insights to forecast fresh, uncharted data character-
istics. The true strength of inductive machine learning lies in its adaptability and capacity 
to extrapolate from past experiences, equipping systems with the capability to make well-
informed, real-time decisions and predictions. This methodology has transformed many 
sectors, from healthcare and finance to autonomous vehicles and recommendation systems. 
As technological progress marches forward, inductive machine learning continues to play 

(1)db = dm ⋅ Π + υD∕dmdb, dm,Π, υD∕dm ∈ N

Fig. 9  Leveling of Cases per Class Balancing Method
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a pivotal role in shaping the future of AI, enhancing our ability to harness the immense 
potential latent within vast and intricate datasets (Dutton and Conroy 1997).

Basic inductive machine learning methods are the foundational building blocks for more 
advanced and intricate machine learning models. These techniques find application in vari-
ous tasks, including classification, regression, and clustering. Notable fundamental meth-
ods encompass Linear Regression, Logistic Regression, K-Nearest Neighbors, Decision 
Trees, Random Forest, Support Vector Machines, K-Means Clustering, Principal Com-
ponent Analysis, and Association Rule Mining (Michalski 1983; Lopez de Mantaras and 
Armengol 1998).

In this study, two basic inductive learning methods, Simple Logistic Regression, and 
Inductive Decision Trees, were employed to analyze categorical data emanating from ques-
tionnaire responses.

Simple logistic regression and inductive decision trees, also known as inference trees, 
each bring distinct advantages when dissecting categorical data. Logistic regression offers 
interpretability by furnishing transparent coefficient-based results, excels in handling cat-
egorical predictors, issues probabilistic outputs, and boasts regularization capabilities to 
combat overfitting. Conversely, decision trees harness non-linearity to capture intricate 
interactions, demonstrate grace in handling missing data, facilitate ease of interpretation, 
autonomously select essential features, and serve as foundational components in powerful 
ensemble methods. The choice between these methods should pivot on the specific charac-
teristics of the dataset and the nature of the problem at hand (Michalski 1983).

4.3.1  Simple logistic regression

Simple Logistic Regression is a fundamental statistical technique for analyzing the rela-
tionship between a binary dependent variable and one or more independent variables. In its 
basic form, it’s employed when the outcome variable is dichotomous, meaning it has only 
two possible outcomes: yes/no, success/failure, or 0/1 (Peng et al. 2002).

The primary goal of Simple Logistic Regression is to model the probability of one of 
the binary outcomes as a function of the independent variable(s). It accomplishes this by 
fitting a logistic curve (S-shaped) to the data, which can capture the non-linear relationship 
between the independent variable(s) and the probability of the outcome occurring (Peng 
et al. 2002; Sperandei 2014).

This technique is widely used in various fields, including medicine, economics, and 
social sciences, for tasks like predicting disease occurrence, analyzing customer behavior, 
or studying the impact of a particular factor on a binary event. Simple Logistic Regression 
provides valuable insights into the probability of an event happening, making it a crucial 
tool in statistical analysis and predictive modelling (Sperandei 2014).

In this work, the SimpleLogistic algorithm was used. This algorithm is designed to 
build linear logistic regression models using LogitBoost (Li 2012) with simple regression 
functions as its foundational base learners. To ensure model efficiency, the optimal number 
of LogitBoost iterations is determined through a cross-validation process, which also ena-
bles automatic attribute selection (Landwehr et al. 2005).

4.3.2  Inductive decision trees

As mentioned above, inductive decision trees are a versatile machine learning method 
renowned for their adeptness in data-driven decision-making and prediction. They offer 
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the unique capability to handle categorical and numerical data, making them indispensable 
tools in diverse domains like finance, healthcare, and marketing (Dahan et al. 2014; Perner 
2015).

The inductive decision trees algorithm used in this work was the C4.5 algorithm. The 
C4. algorithm is an updated commercial version of the C4.5 algorithm (Quinlan, 1993). 
Generally, it addresses the primary challenge of induction decision trees, which corre-
sponds to finding the root and the branches of a tree, choosing the most suitable feature 
(variable) in every development stage of a decision tree, using entropy information criteria, 
precisely the information gain criterion (Quinlan 1993).

where: S: cases set, A: variable, m: number of values of variable A in S, Pr(Ai)|: frequency 
of cases that have Ai value in S, E(SAi)|: subset of S with items that have Ai value, E(S): 
information entropy of S and Gain (S, A): gain of S after a split on attribute A.

Entropy is calculated before information gain is calculated and used to deter-mine how 
“informative” an attribute is. The basic formula of entropy:

where: S: cases set,  Gi: frequency of class  Ci in S, n: number of classes in S and E(S): 
information entropy of S.

The C4.5 algorithm, over other inductive decision trees algorithms, can trans-form a 
classification tree into rules called rulesets. The tree’s transformation into a ruleset consists 
of converting the tree paths into simple "IF / THEN" rules and pruning each rule (having 
as an evaluation criterion the classification accuracy of each rule) to yield the final ruleset. 
The ruleset’s main advantage is that it is more understandable than trees, as it describes 
with simple logic sentences a specific context associated with a class. Other benefits of the 
ruleset are that they contain fewer classification rules than the rules derived from tree paths 
and, in some cases, are more accurate predictors than trees.

In the context of improving the performance of the classification model presented in this 
work, the inductive learning algorithm (algorithm C4.5) was optimized with the adaptive 
boosting method (Quinlan 1993, 1987).

Adaptive Boosting (or AdaBoost) is a supervised ensemble learning algorithm devel-
oped by Freund and Schapire in 1995. Adaptive Boosting reduces the error of any ML 
algorithm (such as Inductive Decision Trees) by sequentially turning many weak classifiers 
into one robust classifier. This can be accomplished with sequential weight adjustments, 
individual voting powers and a weighted sum of the final algorithm classifiers (Freund 
et al. 1999).

4.4  Validation process

Validation processes in machine learning are crucial for assessing and improving the per-
formance of a model. They help ensure that the model generalizes well to new, unseen 
data. Some standard validation processes in machine learning are Train-Test Split or Use 
Train Set, k-fold Cross Validation, Stratified Cross Validation, Leave-One-Out Cross Vali-
dation (LOOCV), Nested Cross Validation, Time Series Cross Validation, Bootstrapping, 
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m
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Hold-Out Validation and Monte Carlo Cross Validation (Polyzotis et al. 2019; James et al. 
2023).

Each validation process has advantages and is suited to different scenarios. The choice 
of validation method depends on the nature of the data, the problem at hand, and the goals 
of the machine learning project.

In this research study, considering the unconditional nature of the dataset, the relatively 
small sample size comprising 525 cases, and the overarching goal of knowledge discovery, 
three fundamental validation methodologies were employed:

• Training Set Evaluation: This involved assessing the model’s performance using a des-
ignated training set, providing initial insights into its capabilities.

• k-fold Cross-Validation: To mitigate the limitations of a small dataset, k-fold cross-
validation was implemented. This technique systematically partitioned the data into 
subsets, iteratively training and evaluating the model, ensuring a comprehensive assess-
ment of its robustness.

• Hold-Out Validation: Hold-out validation was utilized in addition to the other methods. 
This involved reserving a distinct validation set to fine-tune the model before the final 
evaluation, optimizing its performance.

These validation procedures were strategically selected to cater to the unique character-
istics of the data and the objectives of knowledge extraction, collectively ensuring the reli-
ability and generalization of the machine learning approach.

Finally, the validation of the ruleset was conducted both with the use of specific statisti-
cal criteria, as well as with the use of the knowledge and experience of the collaborating 
experts.

To use the following statistical evaluation criteria, the rules of the ruleset were trans-
formed into association rules of the X → Y format, where: X: the antecedent (the combina-
tion of input variables with the corresponding values, for each rule) and Y: the consequent 
(the class of each rule) from the ruleset.

Specifically, the statistical criteria used to evaluate the ruleset presented in this paper 
was the confidence for a X → Y rule, which defines how many of the cases containing X, 
also contain Y as a percentage of the total number of cases containing X. The C4.5 algo-
rithm uses the Eq. (4) (Laplace ratio) to estimate the confidence of each rule (Robertson 
et al. 1998).

4.5  Knowledge mining

Knowledge mining, or knowledge discovery or extraction, is a pivotal process rooted in 
data science and machine learning. It involves extracting valuable insights from extensive 
datasets unveiling hidden patterns and trends. Knowledge mining transforms raw data into 
structured information by employing techniques such as data preprocessing, pattern rec-
ognition, clustering, and classification, facilitating informed decision-making and a com-
petitive edge. Its applications span diverse fields, from business intelligence and scientific 
research to healthcare and finance, and it remains increasingly vital as data volumes surge, 

(4)conf(X → Y) =
(X∪Y)+1

X+2
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fueling innovation and enhancing decision-making capabilities (Maimon and Rokach 
2010).

The final knowledge mining process of this work is based on the validation process and 
aims to produce new knowledge in the form of IF/THEN rules.

Specifically, utilizing the ruleset of the final classification model and using the statistical 
criterion of the confidence presented by each classification rule and the number of cases 
gathered by a classification rule, the strongest classification rules of the final classification 
model were collected and presented.

Any rule that exceeds the 90% confidence limit and contains more cases than the aver-
age of cases collected by all rules was characterized as strong.

5  Result and findings

This paper addresses a 3-class classification problem by employing simple logistic regres-
sion and the inductive decision tree method optimized through the AdaBoost algorithm. 
The specific classification task pertains to categorizing research participants into three dis-
tinct classes based on their responses to a questionnaire titled "Psychological Health, Resil-
ience, and Preparedness for Natural Disasters." This survey was conducted as part of the 
ANDREAS service within the broader AEGIS+ project.

The three classification categories are derived from the primary research question. It 
examines whether participants adhered to the emergency line’s (112) recommendation to 
limit their travel during the snowstorm "Barbara" that affected Greece in 2023. The ques-
tionnaire inquired: "During the recent snowstorm, Barbara, there was a strong recommen-
dation through 112 to avoid trips. How did you respond?" Participants could choose from 
the following responses: (i) I refrained from travelling while the recommendation was in 
effect. (ii) I only travelled when necessary and (iii) I did not restrict my trips (Table 4).

This section unveils the results of implementing the methodological frameworks deline-
ated in Sect. 4. The data utilized at each stage of the proposed methodologies originates 
from the final dataset, comprising 525 cases and 16 variables, as elaborated in the data 
preprocessing phase detailed in Sect. 4.

To elucidate, the initial dataset for each methodological framework underwent the fol-
lowing structure transformation:

Beginning with the final dataset of Sect.  3, which comprised 525 cases and 16 vari-
ables, a subset of 35 cases | 16 Variables was randomly selected to constitute the test set 
employed in the "Hold Out" evaluation procedure. Consequently, the training dataset for 
each methodological framework, comprising 490 cases and 16 variables, was formulated.

The size of the test set, comprising 35 cases, may seem notably small, constituting 
approximately 7% of the original dataset, which contained 525 patients. This limited test 
set size is primarily attributed to the inherent scarcity of cases within the original dataset.

Furthermore, the specific count of 35 cases was meticulously selected to facilitate the 
validation process, particularly within the first methodological framework discussed in 
Sect. 4. For this purpose, a "10-fold Cross Validation" approach was employed, which lev-
eraged the remaining 490 cases. This deliberate choice created 10 equally sized folds, each 
containing 49 patients, ensuring robust and reliable validation.

In the classification phase within each methodological framework, the variable "Trip 
Restriction" was designated as the output variable. In contrast, the remaining 15 variables 
were categorized as input variables, as illustrated in Table 3.
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As seen in Table 4 and the diagram in Fig. 10, there is a high degree of imbalance 
of classification classes, as half and more cases are concentrated in one (of the three) 
classification classes.

Table 3  Input and output 
variables of 3-class classification 
problem

Variable Type

Gender Input
Age Group
Education
Residence Time
Residence Type
Owned Residence
Household with Child
Household with Seniors
Household with Pets
Net Annual Household Income
Work Status
Work Style
Transporting Mean
GPS Usage
Natural Disaster Experience
Trip Restriction Output

Table 4  Classes of output variable (Trip Restriction)

Class Training set (N) Training set (%) Test set (N) Test set (%)

I refrained from travelling 128 26.12 11 31.43
I only travelled when necessary 287 58.57 15 42.86
I did not restrict my trips 75 15.31 9 25.71
Total: 490 100.00 35 100.00

26.12%

58.57%

15.31%

31.43%

42.86%

25.71%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

I refrained from travelling while the recommendation
was in effect

I only travelled when necessary

I did not restrict my trips

Training Set (%) Test Set (%)

Fig. 10  Classes of output variable (Trip Restriction) (490 Cases)
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5.1  Results of the first framework

In line with the initial methodological framework (Framework 01) presented in Sect. 4, 
the construction of classification models was undertaken using a dataset consisting of 
490 cases and 16 variables. This involved the application of both the logistic regression 
method (as detailed in Sect. 4) and the inductive decision tree method (also discussed in 
Sect. 4).

To evaluate the effectiveness of these classification models, results were validated 
using three distinct techniques: "Use Training Set," "10-fold Cross Validation," and 
"Hold Out." The outcomes of these validations are summarized in Table 5, while Fig. 11 
visually represents the performance metrics of the top-performing models for each spe-
cific methodological case.

Based on the performance evaluation of the classification models detailed in Table 5, 
it’s evident that the inductive decision tree method consistently yields the highest accu-
racy rates across all three validation methods. Nonetheless, it’s noteworthy that this 
method demonstrates relatively lower accuracy rates during the "10-fold Cross Valida-
tion" and "Hold Out" validation procedures.

The diminished performance observed in the "10-fold Cross Validation" and "Hold 
Out" methods can be attributed to several factors. First, the imbalance within the clas-
sification classes of the target variable exerts a considerable influence, making it more 
challenging for the models to classify instances in the minority class correctly. Fur-
thermore, statistical noise stemming from the abundance of variables, the number of 
cases, and potential biases and random responses within the questionnaire data used to 

Table 5  Framework 01—classification accuracy of the best classification models

Validation method Use training set (490 
Cases) (%)

10-fold cross valida-
tion (%)

Hold out 
(35 Cases) 
(%)

Decision Tree 99.60 46.90 54.30
RuleSet of Decision Tree 99.60 57.10 53.70
Simple Logistic Regression 58.30 56.70 37.14

99.60% 99.60%

58.30%
46.90%

57.10% 56.70%54.30% 53.70%

37.14%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Decision Tree RuleSet of Decision Tree Simple Logistic Regression

Use Train Set (490 Cases) 10-fold Cross Validation Hold Out (35 Cases)

Fig. 11  Framework 01—classification accuracy of the best classification models
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create the dataset all contribute to the variance in performance. These factors collec-
tively impact the models’ ability to generalize effectively and consistently across differ-
ent validation scenarios.

5.2  Results of the second framework

Given the suboptimal performance of the classification models when applying the initial 
methodological framework outlined in Sect.  4, a subsequent methodological framework, 
denoted as "Framework 02," was implemented. This revised approach encompasses a data 
balancing step utilizing the SMOTE method, as detailed in Sect. 4. This balancing process 
occurred before the development and validation of the classification models.

Specifically, when applying the SMOTE or LCC method to the data set (490 Cases | 16 
Variables) used in the previous methodological framework (Framework 01), a new data set 
of 861 Cases | 16 Variables with 287 Cases in each classification class of the output vari-
able (Table 4).

Table  6 and the corresponding graphical representation in Fig.  12 offer an insightful 
analysis of each model’s performance within the context of the three validation procedures 
employed in the initial methodological framework. These results shed light on the effec-
tiveness of "Framework 02" in addressing the performance limitations observed in the first 
methodological framework.

As per the insights gleaned from Table  6 and the accompanying visual represen-
tation in Fig.  12, a notable enhancement in the classification models’ performance 
becomes apparent when the data balancing method is implemented before developing 

Table 6  Framework 02—classification accuracy of the best classification models (Balancing with SMOTE)

Validation method Use training set
(490 Cases) (%)

10-fold cross validation 
(%)

Hold out
(35 Cases) (%)

Decision Tree 99.80 73.10 57.30
RuleSet of Decision Tree 99.60 72.90 54.20
Simple Logistic Regression 63.20 59.40 34.20

99.80% 99.60%

63.20%
73.10% 72.90%

59.40%57.30% 54.20%

34.20%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Decision Tree RuleSet of Decision Tree Simple Logistic Regression

Use Train Set (861 Cases) 10-fold Cross Validation Hold Out (35 Cases)

Fig. 12  Framework 02—classification accuracy of the best classification models (Balancing with SMOTE)
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and validating these models. Within the specific testing phase encapsulated in "Frame-
work 02," it’s evident that the inductive decision tree model, along with its RuleSet 
counterpart, excels in achieving significantly higher classification accuracy when con-
trasted with the simple logistic regression model.

This discrepancy underscores that there may be more suitable approaches for 
addressing classification classes from similar questionnaires than the simple logistic 
regression method.

However, it’s worth noting that the performance of the inductive decision tree 
model and its RuleSet counterpart registers lower accuracy levels during the "10-fold 
Cross Validation" and "Use Test Set" validation procedures. This observation hints at 
the continued presence of statistical noise within the dataset, which may emanate from 
both the data balancing process—potentially introducing bias into the classification 
models—and the dataset, which encompasses many variables.

Subsequently, when using the new balancing method called LCC, the generated 
classification models present the same as well as higher performances (Table  7 and 
Fig. 13).

As evidenced by the corresponding table and diagram (Table  7 and Fig.  13), the 
superior method, even in the case of using the LCC balancing method, is the inductive 
decision tree method. This is confirmed by the fact that the classification accuracy dur-
ing each validation process shows a significantly higher statistical difference than the 
classification accuracy obtained by applying the simple logistic regression method.

Table 7  Framework 02—classification accuracy of the best classification models (Balancing with LCC)

Validation method Use training set
(490 Cases) (%)

10-fold cross validation 
(%)

Hold out
(35 Cases) (%)

Decision Tree 99.80 89.70 62.30
RuleSet of Decision Tree 99.70 88.40 60.20
Simple Logistic Regression 71.20 62.40 39.40

99.80% 99.70%

71.20%

89.70% 88.40%

62.40%62.30% 60.20%

39.40%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Decision Tree RuleSet of Decision Tree Simple Logistic Regression

Use Train Set (861 Cases) 10-fold Cross Validation Hold Out (35 Cases)

Fig. 13  Framework 02—Classification accuracy of the best classification models (Balancing with LCC)
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5.3  Results of the third framework

The third methodological framework, introduced to investigate the potential emergence 
of biased classification models resulting from applying the second framework (Frame-
work 02), presents a novel balancing-data approach. As outlined in Sect. 4, this distinctive 
approach seamlessly integrates data balancing, classification, and the 10-fold Cross Valida-
tion method.

Within this third framework, the process of data balancing is notably constrained to the 
training set formed during each random partition of the original dataset, which takes place 
as an integral component of the 10-fold Cross Validation procedure. This process is rigor-
ously repeated ten times, aligning with the tenfold partitioning, to comprehensively assess 
the impact of data balancing on model performance and potential biases across various 
iterations.

The outcomes of these validations are summarized in Table 7, while Fig. 13 visually 
represents the performance metrics of the top-performing models for each specific meth-
odological case (Fig. 14) (Table 8).

As observed in Table 9 and the diagram in Fig. 15, using the LCC balancing method 
contributes equally significantly to improving the performance of the final classification 
models.

Finally, as in the case of using the SMOTE balancing method, so in the case of the LLC 
balancing method, the classification method that yields the highest classification accuracy 
is the inductive decision tree method.

99.80% 99.60%

73.90%
67.90%

62.00%
55.10%58.20% 56.20%

36.20%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Decision Tree RuleSet of Decision Tree Simple Logistic Regression

Use Train Set 10-fold Cross Validation Hold Out (35 Cases)

Fig. 14  Framework 03—classification accuracy of the best classification models (Balancing with SMOTE)

Table 8  Framework 03—classification accuracy of the best classification models (Balancing with SMOTE)

Validation method Use training set
(490 Cases) (%)

10-fold cross validation 
(%)

Hold out
(35 Cases) (%)

Decision Tree 99.80 67.90 58.20
RuleSet of Decision Tree 99.60 62.00 56.20
Simple Logistic Regression 73.90 55.10 36.20
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5.4  Comparisons and conclusions

In the context of the comparison of the Third Methodological Framework—which uses 
parallel data balancing and training within the 10-fold Cross Validation process—with 
the Second Methodological Framework—which applies data balancing before the train-
ing process within the same process—it is observed that both case of using the SMOTE 
balancing method, as well as in the case of using the LCC balancing method, the perfor-
mance of the classification models in the Third Methodological Framework shows only 
limited reductions compared to those created in the Second Methodological Framework.

Then, comparing the performance of the best classification model produced by the 
combination of the SMOTE balancing method with the Inductive Decision Tree method 
with the best model resulting from the combination of the LCC balancing method with 
the Inductive Decision Tree method, it is observed that the model, which uses the LCC 
balancing method, performs almost 20% better than the model, which uses the SMOTE 
balancing method. This suggests that the LCC method mitigates the statistical noise of 
the data. In contrast, the SMOTE method, which increases the statistical noise of the 
data, adds new technically produced patterns.

Finally, observing the performance of the best classification model of the global 
approach to the 3-class classification problem (i.e., the model resulting from the com-
bination of the LCC data balancing method with the Inductive Decision Tree method) 
in the context of its evaluation in new (unknown for the model) data (35 patterns), it is 
observed that the performances remain relatively stable, both when applying the balanc-
ing process before the training process (Second Methodological Framework), and when 

Table 9  Framework 03—classification accuracy of the best classification models (Balancing with LCC)

Validation method Use training set
(490 Cases) (%)

10-fold cross validation 
(%)

Hold out
(35 Cases) (%)

Decision Tree 99.80 89.10 60.70
RuleSet of Decision Tree 99.50 88.10 59.70
Simple Logistic Regression 70.00 58.40 38.20

99.80% 99.50%

70.00%

89.10% 88.10%

58.40%60.70% 59.70%

38.20%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Decision Tree RuleSet of Decision Tree Simple Logistic Regression

Use Train Set 10-fold Cross Validation Hold Out (35 Cases)

Fig. 15  Framework 03—classification accuracy of the best classification models (Balancing with LCC)
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applying the data balancing process alongside the training process (Third Methodologi-
cal Framework).

In conclusion, these findings suggest that the second source of statistical noise, arising 
from the inherent characteristics of the classification problem and the data itself, exerts a 
major influence on the model’s performance. Nevertheless, we underscore the potential for 
alleviating this impact by refining the suggested data balancing method (LCC method) or 
exploring novel alternative data balancing techniques, which merit further exploration and 
investigation.

5.5  Knowledge mining and metadata analysis

Upon a comprehensive evaluation of the models resulting from applying the methodologi-
cal frameworks expounded in Sect. 4, it becomes evident that the simple logistic regres-
sion method needs to be better suited for addressing the classification challenge outlined 
in this study. This method consistently yields relatively low classification accuracy, falling 
below the 60% threshold, across all validation procedures, including "Use Train Set," "10-
fold Cross Validation," and "Hold Out." Furthermore, it’s worth noting that simple logistic 
regression exhibits diminished accuracy and tends to generate intricate classification mod-
els that are challenging to comprehend and employ.

In contrast, the inductive decision tree method excels with significantly higher classifi-
cation accuracy, nearly touching the 90% mark when juxtaposed with the simple logistic 
regression method. It offers the distinct advantage of yielding easily interpretable classifi-
cation rules in the form of "IF/THEN" statements. These rules encapsulate valuable knowl-
edge that can be effectively harnessed in disaster management, particularly in evacuation 
during natural calamities like snowstorms.

Below, we present the robust classification rules that have emerged from this study’s 
analysis of the inductive decision tree models. These rules are characterized by their high 
confidence level and represent valuable insights for decision-making and planning.

5.5.1  Classification Rule 1

If a person is over 58  years of age, lives in a private residence, has no children in the 
household, is fully employed through teleworking or through a combination of telework-
ing and living, their primary means of transportation is a car while driving follows GPS 
directions and has experienced a natural disaster (fire, flood or earthquake) in the past, 
then 96.20% will follow the recommendation to limit trip given by the emergency line in the 
event of a snow storm.

The above classification rule covers 18 cases from the data set used to develop and eval-
uate the presented classification model and shows confidence equal to 96.20%.

This classification rule is strong as it covers a more considerable number of cases than 
the average number of cases covered by the ruleset as a whole and shows greater confi-
dence than the moderate confidence of the ruleset.

According to the specific classification rule, a person with an independent friend over 
the age of 58 who has experienced a natural disaster in the past and who is allowed to work 
alternately (telecommuting) in a snowstorm will follow the travel restriction recommenda-
tions. That is, both the experience and the way of working play a decisive factor in limiting 
a person’s trips during a snowstorm.



 Natural Hazards

1 3

5.5.2  Classification Rule 2

If a person of any gender and over the age of 58 with a master education who has expe-
rienced a natural disaster in the past, who has lived for 24–39 years in the area where 
his residence is located, works both with the telework method and with the combination 
of telecommuting and living, when driving uses GPS and faithfully follows its instruc-
tions, then 92.30% will follow the recommendation to limit travel in a possible snow 
storm.

A robust classification rule (Covering 11 cases with 92.3% confidence) verifies Clas-
sification Rule 1, providing the information that work mode is a determining factor in 
limiting trip in a snowstorm as corresponding determining factors are the experience of 
a natural disaster and the ability to follow GPS directions.

5.5.3  Classification Rule 3

A college-educated woman working full-time in the form of a living, who has experienced a 
natural disaster in the past and rarely or hardly ever follows GPS directions, then 92.90% 
will partially ignore the recommendation trip restriction and make the necessary trips.

A strong classification rule (covering 18 cases with 92.90% confidence), in combina-
tion with Rules 1 and 2, confirms the fact that the way of working as well as the ability 
to follow GPS instructions are decisive factors that directly affect the travel decision of 
a citizen to a snowstorm.

5.5.4  Classification Rule 4

A head-educated man who is full-time employed and whose primary mode of transpor-
tation is a car, then 89.50% of the time, will completely ignore the travel restriction rec-
ommendations given by the emergency line in a potential snowstorm.

This classification rule, although less robust than the above classification rules (cov-
ers 17 cases with 89.50% confidence), that a male who works exclusively for life will 
not follow any travel restriction recommendation. A fact that verifies the knowledge 
provided by previous classification rules about the influence that work style has on a 
person’s compliance with travel restriction recommendations in a potential snowstorm.

5.5.5  Classification Rule 5

If a person under the age of 36, whose annual family income is between €10,000 and 
€20,000, works exclusively for life, then, despite not having experienced a natural disas-
ter in the past, 85.00% will faithfully follow the trip restriction instructions to be given 
by the emergency line in a snowstorm.

This rule, although it is the least strong of the set of strong classification rules pre-
sented in this paragraph (it collects 17 cases and shows 85.00% confidence), in combi-
nation with the above classification rules, provides the information that younger people 
(under the age of 36) more easily adapt to the travel restriction recommendations that 
can be given by the emergency line in a possible snow-storm.

Incorporating insights derived from the Chi-Square statistical test, as detailed 
in Sect.  3, we can discern a distinct pattern where variables exhibiting substantial 



Natural Hazards 

1 3

dependence on the target variable of the classification problem, as outlined in Table 8, 
manifest a corresponding frequency of occurrence within the robust classification rules 
(Table 10).

More specifically, when we scrutinize the target variable, "Trip Restriction," following 
Table 8, it becomes evident that it shares a notable degree of dependence with the variables 
"Work Style," "Age Group," and "Work Status." These variables surface with higher fre-
quencies in the robust sorting rules.

This interrelationship between these variables underscores their significance in shaping 
the outcome of the classification model. The variables "Work Style," "Age Group," and 
"Work Status" appear to play a crucial role in the classification process, as they are not only 
closely associated with the target variable but are also recurrently featured in the strong 
classification rules, which, in turn, contribute to the model’s overall effectiveness.

6  Conclusion

Natural disasters, including earthquakes, floods, fires, and other events, have significant 
impacts on both the environment and society. They affect health, the economy, and the 
environment, underscoring the importance of prevention and preparedness for community 
protection. However, natural disasters also profoundly affect people’s mental health, lead-
ing to stress and psychological challenges. Psychosocial support and educational programs 
are crucial in addressing these issues and helping individuals return to normalcy.

Machine learning is emerging as a critical tool in responding to natural disasters and 
understanding human behavior during evacuations. Machine learning algorithms enable 
the prediction of disaster evolution, offering early warnings that can save lives and reduce 
losses. Moreover, applying machine learning to analyze corresponding data aids in under-
standing human behavior during crises, enhancing preparedness for future disasters. 
Machine learning is essential in responding to natural disasters and gaining insights into 
human behavior during emergencies.

This research specifically focused on the challenge of estimating human behavior dur-
ing a natural disaster, such as a snowstorm. Artificial intelligence techniques were used 
to develop classification models that categorize people’s responses into three groups (no 
travel, essential travel only, unrestricted travel) based on socio-economic characteristics 
during a snowstorm that struck Greece in the winter of 2023.

Table 10  Variables with the 
highest degree of dependence 
(Chi-Square Test)

Variable Asymptotic 
significance 
(%)

Work Style 0.00
Age Group 0.10
Work Status 0.10
Owned Residence 1.50
Gender 3.50
Household with Seniors 4.30
Transporting Mean 5.40
GPS Usage 8.70
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As mentioned, artificial intelligence methods were applied to develop classification 
models in the present effort. These models seek to categorize the behavior of individuals, 
considering their socioeconomic characteristics, into three discrete categories: "Did not 
travel at all," "Traveled only as necessary," or "Did not limit travel." This categorization 
was based on instructions to restrict movement during the recent "Barbara" snowstorm, 
which affected Greece in the winter of 2023. The data used in this study came from a paral-
lel survey conducted within the framework of the AEGIS+ research project. This research 
focused on assessing the mental health of individuals who had experienced natural disas-
ters and collected data through a questionnaire.

Utilizing machine learning to analyze survey data opens up new horizons for compre-
hending individuals’ perspectives and preferences across various domains, encompassing 
social, political, and healthcare realms. While this methodology offers valuable insights, it 
grapples with two fundamental challenges. Firstly, safeguarding privacy is paramount since 
questionnaires often contain sensitive personal information. Secondly, ensuring that the 
sampled responses are a true reflection of the broader population is crucial, as variations in 
answers and non-responses can significantly impact the analysis outcomes. This approach 
provides indispensable insights but necessitates meticulous handling of privacy and data 
representation issues.

Protecting personal data in this work is upheld by the corresponding privacy protocols, 
which safeguard the dataset utilized in this research. This dataset comprises 525 Cases and 
encompasses 16 Variables, offering a robust foundation for the exploration and analysis of 
survey data.

The aim of this specific work was the development of capable machine learning models 
that will be able to classify with high accuracy the cases of the initial data set into the clas-
sification as mentioned above classes (I did not make any trip; I made only the necessary 
tips, or I did not limit my trips).

The goal of this work was to generalize the optimal classification model and extract 
knowledge that can be appropriately used in a natural disaster situation. Specifically, three 
methodological frameworks for data analysis with machine learning methods are proposed 
that include combinations of Simple Logistic Regression and Inductive Decision Trees, 
both using the SMOTE method and a new proposed data balancing method called LCC in 
the context of the "Use Train Set", "10-fold Cross Validation" and "Hold Out" validation 
procedures. Out".

The contribution of this article, through the proposed methodological frameworks of 
data analysis with computational methods, is located both in the area of natural disaster 
risk management through the mining of new relevant knowledge and in the broader field 
of data analysis with machine learning methods through the development of hybrid models 
classification models that include the data balancing process at various stages of modelling 
and confirm its importance and positive influence on the performance of respective clas-
sification models.

The results of the overall approach were deemed satisfactory and encouraging for 
the continuation of corresponding approaches. Specifically, through statistical evalua-
tion procedures and comparing the performance (classification accuracy) of the models 
resulting from the simple logistic regression method with the models resulting from the 
inductive decision trees method, it was observed that the most appropriate method was 
the inductive decision trees method optimized with AdaBoost algorithm and combined 
with LCC balancing method. With this method, classification models were developed 
with satisfactory classification accuracy (almost 100% during the Uset Test validation 
process and nearly 90% during the 10-fold cross Validation and Hold Out validation 
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processes) that produce strong classification rules, which can be exploited as knowledge 
in risk management in a natural disaster situation.

During the process of Knowledge Mining and Metadata Analysis, it emerged and 
crossed with the conclusions of the Chi-Square performed on the original data set (525 
Cases | 16 Variables) that the socio-economic characteristics that influence the deci-
sion to move during a natural disaster are the age, education as well as a person’s work 
profile.

In summary, this work focuses on predicting people’s evacuation behavior during natu-
ral disasters. Understanding the factors influencing evacuation decisions can contribute to 
more effective risk management and enhanced disaster preparedness. More in detail, in this 
article, we adopt a hybrid machine learning approach, combining respective algorithms to 
analyze data from various sources, such as (i) Demographic data (Age, gender, socio-eco-
nomic status, etc.), (ii) Psychological characteristics (Stress level, sense of vulnerability, 
trust in the authorities, etc.), (iii) Environmental factors (Characteristics of the area, infor-
mation about the disaster, etc.) as well as (iv) Behavior during previous disasters (Evacu-
ation experiences, participation in preparedness plans, etc.). Data analysis with machine 
learning methods presented in this paper can reveal patterns and correlations influencing 
evacuation decisions. This can lead to (i) Predicting the likelihood of an evacuation, (ii) 
Developing targeted information messages during natural disasters, and (iii) Improving 
evacuation planning.

Our work offers a promising approach for predicting evacuation behavior and enhancing 
natural disaster risk management. Adopting research findings can help reduce loss of life 
and protect communities from the devastating effects of natural disasters.
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