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A B S T R A C T   

Synthetic data generation has emerged as a promising solution to overcome the challenges which are posed by 
data scarcity and privacy concerns, as well as, to address the need for training artificial intelligence (AI) algo-
rithms on unbiased data with sufficient sample size and statistical power. Our review explores the application 
and efficacy of synthetic data methods in healthcare considering the diversity of medical data. To this end, we 
systematically searched the PubMed and Scopus databases with a great focus on tabular, imaging, radiomics, 
time-series, and omics data. Studies involving multi-modal synthetic data generation were also explored. The 
type of method used for the synthetic data generation process was identified in each study and was categorized 
into statistical, probabilistic, machine learning, and deep learning. Emphasis was given to the programming 
languages used for the implementation of each method. Our evaluation revealed that the majority of the studies 
utilize synthetic data generators to: (i) reduce the cost and time required for clinical trials for rare diseases and 
conditions, (ii) enhance the predictive power of AI models in personalized medicine, (iii) ensure the delivery of 
fair treatment recommendations across diverse patient populations, and (iv) enable researchers to access high- 
quality, representative multimodal datasets without exposing sensitive patient information, among others. We 
underline the wide use of deep learning based synthetic data generators in 72.6 % of the included studies, with 
75.3 % of the generators being implemented in Python. A thorough documentation of open-source repositories is 
finally provided to accelerate research in the field.   

1. Introduction 

The exponential growth in digital health technologies, such as elec-
tronic health records (EHRs), wearable health devices, genomic 
sequencing, medical imaging, mobile health application, and telemedi-
cine, leads to a vast amount of daily generated data which can signifi-
cantly enhance healthcare outcomes through advanced analytics and 
artificial intelligence (AI) [1,2]. However, the sensitive nature of patient 
data limits their accessibility and poses significant obstacles in research 
and development [3–5]. Synthetic data are artificially generated data 
that can mimic real-world data without compromising the identity of the 
individuals. Thus, synthetic data offer a unique way to leverage the 
wealth of health information while preserving patient privacy with 

respect to regulations like the Health Insurance Portability and 
Accountability Act (HIPAA) in the U.S. or the General Data Protection 
Regulation (GDPR) in Europe. The value of synthetic data in healthcare 
is of great importance. Synthetic data can be used to improve the per-
formance of AI models, to accelerate drug discovery through simulated 
clinical trials, to improve data accessibility by completing existing data 
and increasing data volume and to protect privacy by reproducing the 
original data avoiding any personally identifiable information (PPI) 
[6–10]. Thus, synthetic data do not only secure patient anonymity but 
also allow researchers to overcome barriers in data availability which 
empowers them to conduct a wide range of experiments and simulations 
without the risk of exposing the patients’ identity. Furthermore, syn-
thetic data can facilitate the development of more diverse and accessible 
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data to improve the generalizability of the AI models across diverse 
populations. This is particularly crucial in the case where data can be 
skewed or underrepresented in the context of harmful bias (e.g. age, 
race, gender), where synthetic data generation can be utilized as a 
mitigation methodology. 

Data privacy is a critical concern in the healthcare domain consid-
ering the sensitive nature of personal health information [3–5,11]. Any 
kind of data misuse or data breach can have severe implications for 
patients which in turn obscures their trust in AI systems. Synthetic data 
can ensure that personal identifiers are completely absent, thereby 
safeguarding patient confidentiality, while allowing researchers to 
harness meaningful knowledge. This is particularly important when 
developing AI models, where access to large scale data is crucial to 
ensure their increased accuracy and reliability. Considering that the 
more data the researchers’ access, the higher the risk of exposing sen-
sitive information, the use of synthetic data mitigates any risk of 
exposing the real patient data. Through this way, the access to 
high-quality data is democratized, a fact that accelerates innovations in 
AI and data science. In addition, the use of synthetic data can lead to 
more robust and generalized AI models that perform well across various 
demographics and conditions, thereby improving their equity and 
effectiveness. On the other hand, synthetic data must maintain a balance 
between realism and privacy. This balance is critical especially in the 
healthcare sector, where the predictive accuracy of the AI models has 
significant effects on patient outcomes. Harmful biases which are often 
introduced in real data such as gender identity and sexual orientation, 
cultural and religious beliefs, language and communication barriers, 
geographic location, occupational hazards, and health insurance status, 
can be mitigated by creating balanced data that reflect the diversity of 
the affected populations [12]. 

Synthetic data can serve as a substitute for real data when training AI 
models. But how can we generate synthetic data? Synthetic data can be 
generated by capturing the statistical properties of the real data to create 
new data points with similar properties. According to the literature, a 
variety of methods has been proposed for the generation of high-quality 
synthetic tabular, imaging, radiomics, time-series, and omics data, 
which are categorized into: (i) statistical-based methods, like the 
multivariate normal distribution (MVND) and bootstrapping to generate 
virtual populations for hypertension drug programs [13], (ii) 
probabilistic-based methods, like the Stochastic Block Models (SBM) 
[14] to integrate multi‑omics data with consistent (common) and dif-
ferential cluster patterns and the time-evolving graphs with meta-
stability [15] to validate methods for capturing temporary changes in 
the time-evolving graphs for human microbiome analysis, (iii) 
machine-learning based methods like the tree ensembles [16–18] for 
data augmentation to improve the performance of disease progression 
and risk stratification models for cardiovascular and autoimmune dis-
eases, the Gaussian Mixture Models (GMM) [19–21] to generate 
large-scale virtual populations, at reduced complexity, for in silico clin-
ical trials, and the Hidden Markov Models (HMMs) [22] to generate 
realistic synthetic behavior-based sensor data for activity recognition in 
smart homes, and (iv) deep-learning based methods, which dominate 
the literature, like the virtual autoencoders (VAEs) to generate synthetic 
PPG signals [23] and myriad variations of the generative adversarial 
networks (GANs) like the Adaptive Deconfounding Synthetic GAN 
(ADS-GAN) to generate high-fidelity privacy-conscious synthetic patient 
data for causal effect estimation with multiple treatments [24], the 
Conditional GAN (CGAN) to generate realistic synthetic tabular data for 
benchmarking [25], the Wasserstein GAN with Gradient Penalty 
(WGAN-GP) to generate synthetic radiomics data from RT and CT im-
ages [26], the Copula GAN (CopulaGAN) for the generation of digital 
twins [27], the Multi-label Time Series GAN (MTGAN) to generate EHRs 
and simultaneously improve the quality of uncommon disease genera-
tion [28], the Transformer-Based Time Series GAN (TTS-GAN) to 
generate human heartbeat signals, timesteps, accelerator values, and 
sinusoidal waves [29], the Cycle-Consistent GAN (CycleGAN) [30–33], 

and the Dual-Discriminator Conditional GAN (DDcGAN) for 
Multi-resolution PET and MR image fusion [34], among many others. 
However, two fundamental key aspects should be taken into consider-
ation prior to the training of any synthetic data generator: (i) data 
anonymization, and (ii) data fidelity. Data anonymization refers to the 
process of removing personally identifiable information from the data, 
so that the patients remain anonymous whereas data fidelity refers to the 
degree to which synthetic data “mimic” the real data using a variety of 
metrics like the goodness of fit, correlation, and the Kullback-Leibler 
divergence, among many others [4,6,16]. High fidelity is vital to 
ensure that synthetic data can reliably replace real data without 
compromising data integrity. 

Multimodality in healthcare refers to the use of multiple forms of 
data inputs (modalities) to aid in decision-making and patient care. 
These modalities can include tabular data (e.g., demographics, labora-
tory examinations, therapies, conditions), imaging data (e.g., CT, MRI, 
PET; and image based quantitative features which are referred to as 
radiomics), time-series data (e.g., ECG, EEG, PPG), and omics data (e.g., 
genomics, proteomics, lipidomics, metabolomics), among others, each 
providing different perspectives on patient health. The integration of 
these diverse data types presents unique challenges in data analysis, but 
it also offers a more holistic view of patient health leading to better 
outcomes. Synthetic data have a crucial role in this interplay since they 
can provide large and diverse data. However, privacy is an important 
factor which is not guaranteed by data fidelity. To this end, best prac-
tices should be adopted for data protection, clearer standards for 
assessing identifiability, and proportionate regulatory approaches to 
facilitate innovation while ensuring privacy. Thus, the availability of 
high-quality synthetic data can enable researchers to develop multi-
modal AI models. Furthermore, synthetic data can enable the simulation 
of complex patient scenarios that might not be frequently encountered 
in real datasets, thereby enhancing the robustness of healthcare systems 
against rare but critical conditions. Moreover, by utilizing synthetic 
data, researchers can bypass many logistical and ethical hurdles that 
occur during the aggregation and analysis of multimodal data, thus 
accelerating the pace of research. Ultimately, the use of synthetic data 
can significantly advance personalized medicine, improving treatment 
efficacy and patient outcomes while upholding stringent data privacy 
standards. 

The current review aims to provide a thorough analysis of synthetic 
data generation methodologies, open-source repositories with codes and 
synthetic data to drive innovation and address common challenges more 
effectively across various healthcare domains, as well as, to improve the 
impact of synthetic data in targeted medical research and practice. The 
primary objectives of this review are the following: (i) to provide a 
better understanding of the methods that are used to generate synthetic 
tabular, imaging, omics, time-series data in healthcare, (ii) to provide 
open source repositories to implement these methods, (iii) to explore 
applications and benefits of using synthetic data in healthcare, (iv) to 
evaluate the impact of synthetic data on patient privacy and regulatory 
compliance, (v) to highlight the challenges and limitations of synthetic 
data, and (vi) to suggest future directions for research and development 
in this area. 

2. Methods 

2.1. Review process 

We conducted a systematic review of the existing literature based on 
the PubMed and Scopus databases to ensure a robust thematic analysis 
of the different use cases on synthetic data generation technologies in 
healthcare based on high quality peer reviewed journals and interna-
tional conferences. Our analysis focuses on five main types of data: 
tabular data, imaging data, radiomics data (image-based quantitative 
features), time-series data, and omics data. A special case on multimodal 
synthetic data generation cases was also investigated. A custom Python 
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script was developed to automate the retrieval process. The script iter-
ates over each year from 2015 to 2024 to apply the respective search 
query for each data type and retrieves the count of publications per year. 
The Scopus API (https://api.elsevier.com/content/search/scopus) and 
the PubMed API (https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch. 
fcgi) were utilized to send HTTP requests with specific queries and 
additional parameters to obtain the total number of results. The function 
iterates over each year within the defined range (from 2015 to 2024), 
updating the query to include the publication date for that year, and 
retrieves the count of publications. These counts are stored in a dictio-
nary for each data type. Once the metadata have been collected, the total 
counts per year and the final counts for each data type are calculated and 
saved into CSV files for further analysis. 

Six individual database queries were designed and executed with a 
focus on the retrieval of studies which are related to the use/generation 
of: (i) synthetic tabular data (or virtual data or virtual population) by 
excluding papers related to imaging, text, videos, and time series data, to 
better capture advances in the healthcare domain focusing on clinical 
and lifestyle data (e.g. demographics, conditions, therapies, patient 
history), (ii) synthetic imaging data with a focus on the GANs or similar 
deep-learning architectures for the generation of synthetic medical im-
ages while excluding text, tabular data, videos, time series to tailor the 
query for medical imaging applications, (iii) synthetic radiomics data by 
exploring studies within the radiomics field involving the extraction of 
large amounts of features from medical images using data- 
characterization algorithms, (iv) synthetic time-series data by identi-
fying papers with a focus on the generation and use of longitudinal, 
temporal data, and various biosignals like EEG, ECG, PPG, MEG, wear-
ables, and vital sensors, (v) synthetic omics data by excluding text, 
tabular data, demographics, videos, imaging, and time series data with a 
focus on diverse biological fields like genomics, proteomics, and 
metabolomics, among others, and (vi) synthetic multimodal data by 
specifically targeting papers that combines multiple data modalities 
such as omics and imaging, time series and clinical data, imaging and 
clinical data, time series and imaging. 

2.2. PRISMA flowchart 

The PRISMA flowchart of the study is presented in Fig. 1 to sum-
marize the multi-phase process of identifying, screening, assessing, and 
including studies in the review. The identification stage involves the 
collection of records through extensive database searches (966 records; 
719 from Scopus and 247 from PubMed, and 11 additional records from 
other sources). After compiling these records, the screening phase fol-
lows to remove duplicate records due to overlapping indexing in the two 
databases yielding 462 records. The unique records then underwent an 
initial screening based on their titles and abstracts to quickly filter out 
clearly irrelevant studies by 4 independent researchers. The eligibility 
phase involves a detailed examination process, where full-text articles of 
the screened records were assessed against predefined criteria to ensure 
that only the studies that truly fit the review’s scope and quality re-
quirements are included. 

To this end, the number of full-text articles assessed was 124; tabular 
data = 29, imaging data = 30, radiomics data = 6, time-series data 
= 20, omics data = 24, multimodal data = 15). From those, 42 were 
excluded by filtering out articles which were: (i) not related to the fields 
of engineering, mathematics, and computer science, (ii) written in a 
non-English language, (iii) pre-prints. The final phase lists the 82 studies 
that passed the eligibility criteria. Those studies are presented as part of 
the qualitative synthesis of this review. 

2.3. The synthetic data generation workflow 

Fig. 2 depicts the core stages of the synthetic data generation 
workflow. It consists of four stages, including: (i) data acquisition, (ii) 
data preparation, (iii) data modeling, and (iv) data quality evaluation. 
The first stage involves the retrieval and management of real data. This 
includes ensuring proper permissions, data governance, and privacy 
compliance to handle sensitive information responsibly. The second 
stage involves the curation and transformation of the real data to make 
them suitable for modeling. This stage is crucial to make the data suit-
able for subsequent modeling. It involves handling missing values, 

Fig. 1. PRISMA flowchart for the systematic review including the database searches, the number of abstracts screened, and the full texts retrieved.  
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normalizing data, and possibly augmenting the dataset to enhance its 
quality and representativeness. The third stage involves the develop-
ment of models (statistical, probabilistic, machine learning, deep 
learning) to generate synthetic data that mimic the properties of the real 
data. The objective is to create synthetic datasets that retain the essential 
characteristics and patterns of the original data without revealing any 
sensitive information. The final stage focuses on the assessment of the 
generated synthetic data quality to ensure that they meet the required 
standards of fidelity, privacy, and utility. 

3. Results 

3.1. Summary of trends in the field 

Fig. 3 summarizes the trends of the existing studies on synthetic data 

generation technologies in healthcare, from 2015 to mid. 2024 which 
highlights the growing interest within the field. More specifically, Fig. 3 
(A) illustrates the total number (counts) of publications per year, from 
2015 to 2024, as indexed by PubMed and Scopus. It shows a significant 
increase in the number of publications over the years, where a signifi-
cant rise is observed in 2023. Fig. 3(B) presents the distribution of the 
publications across various data types which are involved in synthetic 
data generation, including tabular, imaging, radiomics, time-series, 
omics, and multimodal cases. Each axis shows the count of publica-
tions from Scopus and PubMed, suggesting that synthetic imaging and 
tabular data generation are the most researched areas, whereas the time- 
series, omics, radiomics and multimodal data generation studies are 
fewer. 

On the other hand, the types of methods and the programming lan-
guages which are used for synthetic data generation are depicted in  

Fig. 2. The four stages of the synthetic data generation workflow.  

Fig. 3. An overview of: (A) the total number of synthetic data generation studies in healthcare per year by PubMed and Scopus, and (B) the final number of studies 
across different data types (five main data types and multimodal data cases) by PubMed and Scopus. 
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Fig. 4 for the studies presented in Fig. 3(B), including publication trends, 
data type usage, methodological approaches, and programming lan-
guages. Deep learning appears to be the predominant method for syn-
thetic data generation at 72.6 % of the studies, followed by statistical 
methods at 15.1 %, machine learning at 9.6 %, and probabilistic 
methods at 2.7 %. According to Fig. 4(B) Python is the most widely used 
language for 75.3 % of the studies, followed by R for 14.8 %, and other 
languages like C+ +, Java, and Matlab for 9.9 %. 

3.2. Synthetic data generation methods and implementations per data 
type 

3.2.1. Tabular data 
The current methods for synthetic tabular data generation (including 

deep demographics, laboratory examinations, medical conditions, 
therapies, lifestyle data) can be grouped into statistical- and 
probabilistic-based, machine learning (ML)-based, and deep learning 
(DL)-based. The statistical- and probabilistic-based methods utilize sta-
tistical or probabilistic models to generate synthetic data based on the 
statistical distributions and relationships of the variables in the real 
data. Examples of such methods (Table 1) include bootstrapping, the 
multivariate normal distribution (MVND) and the log MVND [13,18, 
35], the Bayesian models [36–38], the vine copula models [39], the 
probabilistic Bayesian networks [18,38,40], and the Bayesian (hierar-
chical) generalized linear models (hGLM) [37]. According to Table 1, 
these methods have been used for: (i) the simulation of covariates in 
clinical trials, (ii) the generation of high-fidelity, large scale patient data, 
(iii) disease progression modeling, (iv) data augmentation to enhance 
the performance of disease classification and risk stratification models, 
and (v) the simulation of augmented clinical trials. The ML-based 
methods can overcome the statistical assumptions for specific distribu-
tions in the real data by capturing complex patterns. Examples of such 
methods (Table 1) include the supervised and unsupervised tree en-
sembles, the radial basis function (RBF)-based artificial neural networks 
(ANNs) [18,36], the state-transition machines [41,42], the sequential 
decision tree-based synthesizers [27,43–45], the Gaussian Mixture 
Models (GMM), the Gaussian Mixture Models with Bayesian inference 
(BGMM) and the BGMM with optimal components estimation 
(BGMM-OCE) [19,20]. These methods have been widely used (Table 1) 
for: (i) data augmentation for disease progression, (ii) transforming 
clinical patient data and modeling of disease progression, which are 
applied in various contexts including digital twin generation and repli-
cability evaluation, (iii) large scale virtual population generation for in 
silico clinical trials. The DL-based methods leverage multi-layer artificial 
neural network (ANN) architectures to better capture nonlinearities and 
complex data interactions. Examples of such methods (Table 1) include 
different variations of the GANs), such as, the Adaptive Deconfounding 

Synthetic GAN (ADS-GAN), the Conditional GAN (CGAN), the Wasser-
stein GAN (WGAN) [24,25], the Copula GAN (CopulaGAN), the Condi-
tional Tabular GAN (CTGAN), the Medical GAN (MedGAN), and the 
RadialGAN (radial basis functions within a GAN), as well as, the Tabular 
Variational Autoencoder (TVAE), the Variational Autoencoders (VAEs), 
and the Tabular Denoising Diffusion Probabilistic Model (TabDDPM) 
[27,43,44,46,47]. These methods (Table 1) have been used for: (i) 
privacy-conscious synthetic data generation for clinical decision sup-
port, (ii) generating synthetic populations and digital twins, and (iii) 
improving the predictive performance on minority groups. 

The metrics which are used to measure synthetic tabular data fidelity 
and quality, include descriptive statistics (mean, median, standard de-
viation, variance-covariance, range, and proportions for categorical 
data), and more straightforward metrics, such as, the relative predictor 
error (RPE), the relative bias (RB), the Wasserstein distance (WD), the 
Pearson’s correlation coefficient (CC), the Spearman correlation (SC), 
the Kendall’s rank coefficient (KRC), the goodness of fit (GOF), the KL 
divergence (KLD), the relative error (RE), the polynomial regression 
coefficients (PRC), and the density plots (DPs). These metrics assess how 
well the synthetic data preserve the statistical properties, feature re-
lationships and context of the real data. Additional statistical measures 
like the KS test (Kolmogorov-Smirnov test), the CS test (Chi-Squared 
test), the cosine similarity distance (CSD), the Jaccard similarity index 
(JSI), the pairwise correlation difference (PCD), the maximum mean 
discrepancy (MMD), the coefficient of variation (cV), the Jensen- 
Shannon distance (JSD), and the bias-eliminated coverage (BEC) are 
employed to ensure the synthetic data fidelity. Privacy metrics focus on 
ensuring the synthetic data does not compromise individual privacy, 
using measures, such as, the ε-identifiability, the K-anonymity, the K- 
map, and the L-diversity to evaluate re-identification risks. The majority 
of the metrics for the evaluation of the tabular data fidelity and quality, 
as well as, for the other types of data which are described next, are 
presented in [7]. 

3.2.2. Imaging data 
The current advances in synthetic medical imaging data generation 

mainly rely on the deployment of GANs and several proposed variations 
of the GANs, as well as, on DL-oriented, specialized algorithms. GANs 
play a critical role in image synthesis. Examples (Table 2) include the 
Enhanced Balancing GAN, which is utilized for generating minority class 
images in imbalanced datasets [48], and other forms of GANs such as the 
Attention-based GAN [49], the CycleGAN [30–33], and the 
Dual-Discriminator Conditional GAN (DDcGAN) [34] applied in tasks 
ranging from medical image enhancement to cross-modality image 
synthesis. Other specialized GAN variants, such as, the Progressively 
Growing GANs [50] and the Style Distribution GAN (SD-GAN) [51] 
focus on generating clinically realistic X-rays and transferring style 

Fig. 4. Overview of methods and programming languages used for synthetic data generation in healthcare: (A) Types of methods used in the studies, (B) Pro-
gramming languages used for the implementation. 
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distributions in images, respectively. Other DL-oriented approaches 
include a variety of neural network architectures beyond traditional 
GANs, such as, the Conditional Variational Autoencoder [52] and the 
Contrastive Diffusion Model [53] which are notable for their perfor-
mance in generating realistic, high-resolution images and fine-detail 
PET reconstruction. Furthermore, Vision Transformers [54], have 
shown their potential in fast MRI reconstruction by harnessing the ca-
pabilities of transformer models, which have been successful in natural 
language processing but lately used on image classification and seg-
mentation tasks. Furthermore, the Ensemble of Convolutional Neural 

Networks [55], which is a combination of DL approaches, enhances the 
detection of out-of-distribution objects in imaging data, which is crucial 
for reliable medical diagnosis. Similarly, Normalizing Flows [56] have 
been employed to mitigate the effects of CT acquisition and recon-
struction anomalies, providing more accurate and consistent imaging 
outputs. Finally, a pythonic library containing multiple pre-trained 
GAN-based models (CT-GAN, WGAN, SinGAN, PGGAN, FastGAN, 
pix2pix) has been also reported, named medigan [57], to allow re-
searchers to access, generate, and benefit from synthetic medical im-
aging data, including mammographies, brain MRI, endoscopy, chest 

Table 1 
A summary of the scope, algorithms, programming languages, open-source codes or libraries, and metrics to measure synthetic data quality which are used by the 
studies that focus on the generation of synthetic tabular data.  

Study Scope Statistical approaches / 
algorithm (s) used 

Programming 
language/ 
Software 

Open-source codes or libraries used Metrics used to 
measure synthetic 
data fidelity/privacy 

[13] Simulation of covariates for clinical 
trials 

Bootstrapping, MVND R https://cran.r-project.org/web/ 
packages/mice/index.html 

Summary statistics, 
RPE, RB, CC 

[24] Privacy-conscious synthetic data 
generation for causal effect estimation 
in treatment analysis 

ADS-GAN Python https://github.com/tensorflow/ 
tensorflow 

WD, CC, SC, KRC, 
ε-identifiability 

[36] Data augmentation for disease 
classification and risk stratification 

Bayesian models, tree ensembles, 
RBF-based ANNs 

R, Python https://cran.r-project.org/web/ 
packages/semiArtificial/index.html 

GOF, KLD, CC 

[39] To generate realistic virtual patient 
data in pharmacometrics 

Vine copula models R https://github.com/vanhasseltlab/ 
copula_vps 

RECC, mean, standard 
deviation, median RE, 
PRC, DPs 

[20] Virtual population generation for in- 
silico clinical trials in HCM 

BGMM Python https://github.com/scikit-learn/ 
scikit-learn 

CC, GOF, KLD 

[40] Synthetic dataset generation using 
Bayesian methods for clinical 
applications 

Probabilistic Bayesian networks OpenMarkov 
software 

- - 

[19] To generate high-quality, large-scale 
synthetic data at reduced 
computational complexity 

BGMMO-CE Python https://github.com/vpz4/BGMM- 
OCE 

cV, GOF, KLD, CC 

[27] Digital twin generation for 
personalized clinical trials 

TabularSimulationBase, 
GaussianCopula, CopulaGAN, 
TVAE, CTGAN, MedGAN 

Python https://github.com/RyanWangZf/ 
PyTrial 

CC, WD 

[43] A comparative analysis of five distinct 
approaches 
for creating virtual data populations 
from individuals suffering from 
chronic coronary disorders 

Tabular Preset, Gaussian Copula, 
GANs, CTGAN, VAEs 

Python https://github.com/sdv-dev/SDV KS test, CS test, CC, CSD 

[37] A Bayesian hierarchical method for 
combining in silico and in vivo data 
onto an augmented clinical trial with 
binary endpoints. 

Bayesian (hierarchical) 
generalised linear models (hGLM) 

R https://cran.r-project.org/web/ 
packages/rstan/index.html 

KS test, CS test, CC 

[41] To develop a pipeline for transforming 
clinical patient data to conform with a 
model designed using OBO Foundry 
ontologies using synthetic data 

State-transition machines Java https://github.com/synthetichealth/ 
synthea 

GOF, CC, KS test, CS test 

[18] To predict disease progression for 
patients diagnosed with HCM during a 
10-year period using synthetic data 

MVND, log-MVND, RBF-based 
ANNs, tree ensembles, Bayesian 
networks 

R, Python https://cran.r-project.org/web/ 
packages/deal/index.html, https:// 
cran.r-project.org/web/packages/ 
semiArtificial/index.html, scipy 

CC, KS test, CS test 

[25] To develop realistic synthetic datasets 
suitable for validating digital health 
applications with a focus on clinical 
decision support systems. 

CGAN, WGAN Python - CC, JSI, GOF 

[46] To examine the usability of synthetic 
data in decision support systems, with 
a focus on data quality and security 

CTGAN Python https://github.com/sdv-dev/SDV - 

[44] To overcome the lack of high-fidelity 
datasets and ensure patient’s privacy 

CTGAN, Gaussian Copula Python sklearn, imblearn, sdv PCD, MMD, KLD 

[42] To develop a model of novel 
coronavirus (COVID-19) disease 
progression and treatment 

State-transition machines Java https://github.com/synthetichealth/ 
synthea 

CC, KS test, CS test 

[47] To improve predictive performance on 
minority groups 

RadialGAN, TabDDPM, CTGAN, 
TVAE 

Python https://github.com/vanderschaarlab/ 
synthcity 

JSD, WD, KLD, KS test, 
MMD, K-anonymity, K- 
map, L-diversity 

[38] To generate high-fidelity synthetic 
patient data based on UK primary care 
patient data 

Bayesian networks R https://github.com/zhenchenwang/ 
latent_model 

- 

[45] To evaluate the replicability of 
analyses using synthetic data 

Sequential decision tree-based 
synthesizer, GANs 

Python, R https://osf.io/vsku2/ BEC  
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X-ray, cardiac MRI, and breast DCE-MRI, among others. 
The metrics which are widely deployed to assess the synthetic im-

aging data fidelity and quality include the Frechet Inception Distance 
(FID) and the Inception Score (IS), which assess the similarity of syn-
thetic data to real data by comparing feature distributions and evalu-
ating the performance of image classifiers. The Structural similarity 
index measure (SSIM), the peak signal to noise ratio (PSNR), the 
normalized mean squared error (NMSE), and the mean average error 
(MAE) are also used to quantify the visual and statistical similarity 

between synthetic and real images. Furthermore, the Learned Perceptual 
Image Patch Similarity (LPIPS), the entropy, the mean gradient, the 
spatial frequency, the correlation coefficient, and the Visual Information 
Fidelity (VIF) are further used to assess the perceptual and statistical 
properties of the synthetic imaging data. Additional metrics, such as, the 
Natural Image Quality Evaluator (ENIQE), the Blind Reference Image 
Spatial Quality Evaluator (BRISQUE), the mean squared error (MSE), 
and the feature similarity index for image quality assessment (FSIM) can 
provide more detailed evaluations of the synthetic image quality. 

Table 2 
A summary of the scope, algorithms, programming languages, open-source codes or libraries, and metrics to measure synthetic data quality which are used by the 
studies that focus on the generation of synthetic imaging data.  

Study Scope Statistical approaches / algorithm 
(s) used 

Programming 
language/ 
Software 

Open-source codes or 
libraries used 

Metrics used to 
measure synthetic 
data fidelity/ 
privacy 

[48] Enhanced Balancing GAN for Minority Class Image 
Generation 

Enhanced Balancing GAN Python https://github.com/ 
GH920/improved- 
bagan-gp 

FID, IS 

[55] Efficient Data Augmentation Network for Out-of- 
Distribution Image Detection 

Ensemble of Convolutional Neural 
Networks 

Python https://github.com/ 
majic0626/Data- 
Augmentation-Network 

- 

[49] Blind Degradation Modelling for High-Resolution 
Medical Images (BliMSR) 

Attention-based GAN Python https://github.com/ 
Samiran-Dey/BliMSR 

- 

[52] Conditional Variational Autoencoder with 
Balanced Pre-training for GANs 

Conditional Variational Autoencoder, 
GAN 

Python https://github.com/ 
alibraytee/CAPGAN 

FID, SSIM 

[53] Contrastive Diffusion Model with Auxiliary 
Guidance for Coarse-to-Fine PET Reconstruction 

Contrastive Diffusion Model Python https://github.com/ 
Show-han/PET- 
Reconstruction 

PSNR, SSIM, NMSE 

[30] Correction of Out-of-Focus Microscopic Images by 
Deep Learning 

CycleGAN Python https://github.com/ 
jiangdat/COMI 

PSNR, SSIM, CC 

[56] CTFlow: Mitigating Effects of CT Acquisition and 
Reconstruction with Normalizing Flows 

Normalizing Flows Python https://github.com/hsu- 
lab/ctflow 

PSNR, SSIM, LPIPS 

[34] Dual-Discriminator Conditional GAN for Multi- 
Resolution Image Fusion (DDcGAN) 

Dual-Discriminator Conditional GAN Python https://github.com/ 
jiayi-ma/DDcGAN 

entropy, mean 
gradient, spatial 
frequency, PSNR, 
SSIM, CC, VIF 

[31] Endoscopic Ultrasound Image Synthesis Using a 
Cycle-Consistent Adversarial Network 

Cycle-Consistent Adversarial Network - https://ebonmati.github. 
io/ 

FID 

[32] DC-cycleGAN: Bidirectional CT-to-MR synthesis 
from unpaired data 

CycleGAN Python https://github.com/ 
JiayuanWang-JW/DC- 
cycleGAN 

PSNR, SSIM, MAE 

[54] Fast MRI Reconstruction: How Powerful 
Transformers Are? 

Vision Transformer Python https://github.com/ 
ayanglab/SwinGANMR 

PSNR, SSIM, FID 

[58] Flow-Based Visual Quality Enhancer for Super- 
Resolution Magnetic Resonance Spectroscopic 
Imaging 

Flow-Based Network Python https://github.com/ 
dsy199610/Flow- 
Enhancer-SR-MRSI 

PSNR, SSIM, LPIPS 

[59] HQG-Net: Unpaired Medical Image Enhancement 
with High-Quality Guidance 

Combination of Enlighten & Still 
GANs 

Python https://github.com/ 
ChunmingHe/HQG-Net 

PSNR, average 
gradient, ENIQE, 
BRISQUE 

[60] Image Augmentation Using a Task-Guided 
Generative Adversarial Network for Age 
Estimation on Brain MRI 

Task-Guided GAN Python https://github.com/ 
ruizhe-l/tgb-gan 

MSE, MAE 

[61] On Data Augmentation for GAN Training Data Augmentation for GANs Python https://github.com/ 
sutd-visual-computing- 
group/dag-gans 

FID, IS, KLD 

[50] Evaluating the Clinical Realism of Synthetic Chest 
X‑Rays Generated Using Progressively Growing 
GANs 

Progressively Growing GANs Python https://github.com/ 
BradSegal/CXR_PGGAN 

FID, Human eYe 
Perceptual 
Evaluation 

[51] SD-GAN: A Style Distribution Transfer Generative 
Adversarial Network 

Style Distribution GAN (SD-GAN) Python https://github.com/ 
tasleem-hello/SD-GAN/ 
tree/SD-GAN 

PSNR, SSIM 

[62] Self-Supervised Visual Representation Learning for 
Histopathological Images 

CS-CO: hybrid self-supervised visual 
representation learning method 
tailored for H&E-stained 
histopathological images 

Python https://github.com/ 
easonyang1996/CS-CO 

- 

[63] Slice Profile Estimation From 2D MRI Acquisition 
Using Generative Adversarial Networks 

GAN Python, Docker https://github.com/ 
shuohan/espreso 

MAE, PSNR, SSIM 

[33] StainGAN: Stain Style Transfer for Digital 
Histological Images 

CycleGAN Python https://github.com/ 
xtarx/StainGAN 

PSNR, SSIM, FSIM, 
CC 

[57] medigan: A complete pythonic library with 
multiple pre-trained GANs for the generation of 
synthetic medical imaging data (mamographies, 
brain MRI, endoscopy, chest X-ray, cardiac MRI, 
breast DCE-MRI) 

CDGAN, CycleGAN, WGAN-GP, C- 
DCGAN, PGGAN, FastGAN, SinGAN, 
pix2pix 

Python https://github.com/ 
RichardObi/medigan 

FID  
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3.2.2.1. Radiomics data (Image-based quantitative features). Radiomics 
data consist of quantitative features which are extracted by medical 
images. They formulate a critical subfield of medical imaging data. 
According to Table 3, most of the studies which focus on synthetic 
radiomics data generation are mainly DL-based using methods, such as, 
the WGAN-GP [26], the CTGAN [52], the TVAE and the Copula GAN to 
offer enhanced flexibility and capacity to capture complex data distri-
butions. On the other hand, the tabular Preset and the Gaussian Copula 
are the two statistical methods that have been used for synthetic 
radiomics data generation, relying on the statistical properties of the 
real-world training data [64]. These methods harness the power of 
adversarial networks to learn the underlying data distribution and 
generate synthetic data that closely resemble real-world radiomic fea-
tures. Several attempts have been also reported towards the generation 
of synthetic radiomic images like the RadSynth [64] which is a deep 
CNN-based model that produces synthetic GLCM (Grey Level 
Co-occurrence Matrix) entropy images. 

The metrics which are used to measure the fidelity and quality of the 
synthetic radiomics data, include the Distributed Stochastic Neighbor 
Embedding (t-SNE), which is a dimensionality reduction technique used 
to visualize high-dimensional data and assess clustering and distribution 
similarities between synthetic and real data. The correlation coefficient 
(CC) is also used to measure the linear relationship between real and 
synthetic data. The Bland-Altman (BA) plot is used to compare two 
measurement techniques by plotting the differences between synthetic 
and real data against their averages, helping to identify any systematic 
differences. In addition, the Chi-Square (CS) test is often deployed to 
compare the distributions of categorical variables in synthetic and real 
data, assessing how well the synthetic data matches the distribution of 
real data. Basic statistical correlation tests further evaluate the preser-
vation of statistical properties in synthetic data. 

3.2.3. Time series data 
The methods for synthetic time series data generation (including 

electrocardiogram (ECG), photoplethysmographic (PPG), sensor-based 
measurements, longitudinal observations, and other biosignals) can be 
split into statistical- and probabilistic-based, ML-based, and DL-based. 
The statistical-based methods rely on several statistical principles and 
probabilistic models. One noticeable approach is the Guided Evolu-
tionary Synthesizer (GES), which integrates genetic algorithms, concept 
maps, and randomness operators [67]. Another significant 
statistical-based method is the statistical feature space selection, which 
involves identifying critical features and using them for representative 
sampling [23]. The Synthetic Acute Syndromes Creator (SASC) utilizes 
summary statistics and internal correlations, maintaining cross-patient 
consistency [68]. Additionally, SASC utilizes random generation under 
constraints focusing on single-parameter distributions and their relative 
correlations [68]. The above-mentioned approaches (Table 4) demon-
strate the adaptability and robustness of statistical-based methods in 

generating synthetic time series data. According to Table 4, these 
methods have been widely used for: (i) adversarial learning on biosignal 
data, (ii) generating synthetic data considering metadata as part of the 
generation process, (iii) augmenting sensor-based data, (iv) synthesizing 
time series EHR data and tackling the imbalance of uncommon diseases, 
(v) multivariate time series generation, (vi) employing existing gener-
ative models to produce medical time series, (vii) generating realistic 
synthetic time series data sequences of arbitrary length and (viii) 
generating ECG data. 

The ML-based methods for synthetic time series data generation vary 
from conventional supervised learning algorithms to advanced AI 
modeling. An example of such a method (Table 4) is the two-level 
Hidden Markov Models (HMMs) with regression learners [22], where 
the first-level HMM generates realistic sequences of activities, while the 
second one creates sensor events reflective of those activities. Regression 
learners apply statistical regression to capture time gaps and the dura-
tion of each activity, ensuring accurate representation of time series 
data. The latter is typically more flexible and adaptive compared to 
statistical-based methods. ML-based methods are widely used for 
generating synthetic time series data composed of nested sequences. On 
the other hand, DL-based methods lie in the core of synthetic generation 
of healthcare related time-series data. They often rely on GANs [69], 
which consist of a trained generator on the real dataset that produces the 
synthetic data and a discriminator that evaluates its reliability. One 
notable approach is the Wasserstein Generative Adversarial Network 
with Gradient Penalty (WGAN-GP) [70], which enhances traditional 
GANs by stabilizing training and improving convergence. Doppel-
GANger (DGAN) [70] introduces a unique approach by generating 
metadata with a Multi-Layer Perceptron (MLP). Time Series Generative 
Adversarial Network (TS-GAN) [71] focuses on Long Short-Term 
Memory (LSTM) networks to maintain temporal dependencies. Other 
GAN-based methods include the Multi-label Time series Generative 
Adversarial Network (MTGAN) [28], designed to generate synthetic 
data with multiple labels, and the COmmon Source CoordInated 
Generative Adversarial Network (COSCI-GAN) [72], which manages 
inter-channel correlations to preserve relationships between time series. 
HealthGAN [73], built on the Wasserstein GAN architecture, targets 
healthcare applications, while the Transformer-Based Time Series 
Generative Adversarial Network (TTS-GAN) [29] employs the trans-
former model’s self-attention mechanism. The Modality Transfer 
Generative Adversarial Network [69] uses GANs to generate synthetic 
time series data by transferring modalities. In addition to GAN-based 
approaches, other DL algorithms contribute to synthetic time series 
data generation such as the diffusion-based conditional models, com-
bined with structured state space models (SSSMs) [74], the causal 
recurrent variational autoencoder (CR-VAE) [75], the Variational 
Autoencoders (VAEs) [23] and the Adversarial Autoencoders (AAEs) 
[69]. The above-mentioned DL-based methods showcase the adapt-
ability and potential of DL in synthetic time series data generation. 

Table 3 
A summary of the scope, algorithms, programming languages, open-source codes or libraries, and metrics to measure synthetic data quality which are used by the 
studies that focus on the generation of synthetic imaging data.  

Study Scope Statistical approaches / 
algorithm (s) used 

Programming 
language/ 
Software 

Open-source codes or libraries 
used 

Metrics used to 
measure synthetic 
data fidelity/privacy 

[26] To apply the WGAN-GP algorithm to generate 
radiomics data. 

WGAN-GP Python https://github.com/ 
EmilienDupont/wgan-gp 

t-SNE 

[66] Developed a CNN model to efficiently generate 
radiomics data. 

RadSynth - - CC, BA plot 

[65] To combine MRI-Based Radiomics with DL-based 
data augmentation for differentiating IDH-mutant 
grade 4 astrocytomas from IDH-wild-type 
glioblastomas. 

CTGAN R, Python https://github.com/sdv-dev/ 
CTGAN, https://github.com/ 
kasaai/ctgan?tab=readme-ov-file 

- 

[64] To evaluate the potential of synthetic radiomic 
data generation in addressing data scarcity in 
radiomics/ radiogenomics models. 

Tabular Preset, Gaussian 
Copula, TVAE, CTGAN, 
Copula GAN 

Python https://github.com/sdv-dev/SDV CS test, basic statistical 
correlation test  
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The utilized metrics to assess the synthetic time-series generated data 
quality and fidelity include a variety of statistical, visual, and 
performance-based measures. Metrics and visualization techniques, 
including the Distribution (PRD) plots, the Data Labelling Analysis 
(DLA), the Autocorrelation, the Mean Absolute Error (MAE), and the 
correlation coefficient are used to evaluate how well the synthetic data 
preserves the distribution and relationships present in the real data. 
Utilizing a reference model assesses the realism of synthetic data by 
comparing model performance on synthetic versus real data. The 
Maximum Mean Discrepancy (MMD) and the Mean Squared Error (MSE) 
are used to measure the difference in distributions and errors between 
synthetic and real data. The bias score evaluates the effectiveness of 
synthetic data in mitigating biases. The discriminator loss in generative 
models, the visual inspection using t-SNE and PCA, and the correlation 
plots provide insights into the synthetic data’s visual and structural 
quality. Additional metrics, such as, the Generated Disease Types (GT), 
the Jensen-Shannon Divergence (JSD), the Normalized Distance (ND), 
the Average Euclidean Distance (AED), the Wasserstein Distance (WD), 
the Frobenius norm, the Spearman’s ρ, and the Kendall’s τ are used to 
further quantify the similarity in statistical properties. Moreover, met-
rics like the Average Hourly Energy Consumption (AHEC), the Welsch t- 
test, the Average Cosine Similarity (ACS), and the Dynamic Time 
Warping (DTW) are also deployed in specific domain applications. 
Furthermore, classification and prediction performance-based metrics 
are crucial for evaluating the practical utility of synthetic data in pre-
dictive modeling. 

3.2.4. Omics data 
According to the literature, the majority of the existing synthetic 

omics generation approaches rely heavily on established statistical 
principles and models to simulate multi-omics data (e.g. tran-
scriptomics, metabolomics, proteomics, gene expression). Examples of 
such methods (Table 5) include the randomly selected and randomly 
permuted enriched pathways [76], causal feature clusters [77], the 
random covariance method (RCM) and the Cascade method [78], 
probabilistic modeling [79], random generation from uniform distri-
butions [80], MVND [81], power law degree distribution [76], random 
perturbations [82], the simulated linear test (s-test) [83], the stochastic 
Block Models (SBM) [14] and the time-evolving graphs with meta-
stability based on stochastic differential equations [15]. According to 
Table 5, these methods have been used to: (i) produce semi-synthetic 
metabolomics data preserving underlying distributions, the statistical 
assumptions based on the number of pathways, clusters, (ii) validate 
stratified causal discovery approaches in synthetic omics data, (iii) 
simulate gene expression data, accounting for additive biases, (iv) to 
model real data distributions in metabolomics and other omics data, (v) 
generate network topologies for tumor and normal cells in co-expression 
networks, (vi) mimic realistic complexities in multi-omics heteroge-
neous data analysis, (vii) improve proteomics data analysis through 
synthetic data generation, (viii) overcome challenges in multi-omics 
data integration, (ix) study human microbiome dynamics, (x) generate 
synthetic transcriptomics data reflecting specific trends, and (xi) model 
complex multi-omics data related to cancer. DL-based methods have 
been also deployed (Table 5), but to a smaller extent, including the 
WGAN-GP [84], the omicsGAN [85], the virtual Autoencoders (VAEs), 
and the Deep Boltzmann Machines (DBMs) [86] to: (i) address class 
imbalance problems in high-dimensional microarray and lipidomics 
data, (ii) enhance disease phenotype predictions, and (iii) enhance the 

Table 4 
A summary of the scope, algorithms, programming languages, open-source codes or libraries, and metrics to measure synthetic data quality which are used by the 
studies that focus on the generation of synthetic time-series data.  

Study Scope Statistical approaches / 
algorithm (s) used 

Programming 
language/ 
Software 

Open-source codes or libraries 
used 

Metrics used to measure 
synthetic data fidelity/ 
privacy 

[70] Develop a platform for providing 
synthetic data considering metadata as 
part of the time series generation 
process. 

WGAN-GP, DGAN - - PRD plots, DLA, 
Autocorrelation, MAE, CC 

[74] Generate synthetic ECG data utilizing 
diffusion-based techniques. 

SSSD-ECG model based on the 
DiffWave architecture, 
WaveGAN* , Pulse2Pulse 

Python https://github.com/ 
AI4HealthUOL/SSSD-ECG 

Utilizing a reference model for 
assessing the realism of the 
synthetic data 

[75] Novel generative model for medical 
time series generation. 

Causal Recurrent Variational 
AutoEncoder (CRVAE) 

Python https://github.com/ 
hongmingli1995/CR-VAE 

MMD, MSE 

[67] Framework for bias analysis in 
healthcare time series data 

Guided Evolutionary 
Synthesizer (GES) 

- - Bias score for bias mitigation 

[71] A Generative Adversarial Network 
(GAN) architecture for sensor-based 
health data augmentation 

TS-GAN - - Discriminator loss, MMD, t- 
SNE and PCA 

[23] Generation of synthetic PPG data using 
an in-silico cardiac model 

Variational Autoencoder 
(VAE) 

- - Mainly based on classification/ 
prediction performance 

[68] An efficient approach for generating 
longitudinal observational patients 
cohorts 

Classical statistical 
distribution, Summary 
statistics, Internal correlations 

R https://github.com/Fraunhofer- 
ITMP/SASC 

Correlation plots between the 
correlations of real and 
synthetic data 

[28] Generate time series EHR data and 
imbalance uncommon diseases. 

Multi-label Time series GAN 
(MTGAN) 

Python https://github.com/LuChang-CS/ 
MTGAN 

GT, JSD, ND 

[72] A novel framework for multivariate 
time series generation 

COmmon Source CoordInated 
GAN (COSCI-GAN) 

Python https://github.com/aliseyfi75/ 
COSCI-GAN 

AED, WD, MAE, Frobenius 
norm, SC, KRC 

[73] Employing existing generative models 
to produce medical time series 

HealthGAN, Wasserstein GAN, 
TimeGAN 

Python https://bitbucket.org/ 
mvdschaar/mlforhealthlabpub/ 
src/master/alg/timegan/ 

AHEC, Welsch t-test 

[29] A transformer-based GAN generating 
realistic synthetic time series data 
sequences of arbitrary length 

TTS-GAN Python https://github.com/imics-lab/tts- 
gan 

t-SNE, PCA, ACS, JSD 

[69] A broad analysis on adversarial 
learning on biosignal data 

GAN, Adversarial 
AutoEncoder, Modality 
Transfer GAN 

Python https://github.com/ 
theekshanadis/biosignalGANs 

Mainly based on classification/ 
prediction performance 

[22] Synthetic time series data generation 
that is composed of nested sequences 

Combination of HMM and 
regression algorithms, Time 
series distance measures 

Python https://github.com/jb3dahmen/ 
SynSys-Updated 

AED, DTW  
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Table 5 
A summary of the scope, algorithms, programming languages, open-source codes or libraries, and metrics to measure synthetic data quality which are used by the 
studies that focus on the generation of synthetic omics data.  

Study Scope Statistical approaches / 
algorithm (s) used 

Programming 
language/ 
Software 

Open-source codes or 
libraries used 

Metrics used to measure synthetic 
data fidelity/privacy 

[87] To evaluate the performance of 
single-sample pathway analysis 
(ssPA) methods on semi-synthetic 
COVID-19 metabolomics data 

Randomly selected and randomly 
permuted enriched pathways to 
produce semi-synthetic 
metabolomics data preserving 
the underlying distributions 
(both joint and marginal) 

Python, R https://github.com/cwieder/ 
py-ssPA 

Classification performance/ 
prediction metrics, OC 

[88] To demonstrate the benefit of 
grouping molecules into pathways 
using semi-synthetic COPD and 
COVID-19 metabolomics, 
proteomics and transcriptomics 
data 

Python, R https://github.com/cwieder/ 
PathIntegrate 

Classification performance/ 
prediction metrics, Sensitivity to 
Low Signal-to-Noise Signals, 
Significance of Pathway Feature VIP 
or MB-VIP Value 

[84] To address the class imbalance 
problem in high-dimensional 
microarray and lipidomics data 
using synthetic data 

WGAN-GP Python https://github.com/ 
sjcusworth/GAN_Scripts 

Welch’s t-test, standard deviation, 
mean difference in scores, distance 
metric on generator loss 

[77] To validate a stratified causal 
discovery approach using synthetic 
omics data 

Statistical assumptions based on 
the number of pathways, clusters, 
causal feature clusters 

Matlab https://github.com/ 
MehrdadMansouri/Aristotle 

Classification performance/ 
prediction metrics 

[14] To overcome the challenges posed 
by the integration of multi-omics 
data (miRNA, DNA methylation, 
gene expression) in five different 
types of cancer using synthetic data 
for validation 

Stochastic Block Model (SBM) Matlab https://github.com/ 
hamas200/MVCPM 

Classification performance/ 
prediction metrics 

[15] To study the dynamic processes of 
the human microbiome using 
synthetic data for validation 

Time-evolving graphs with 
metastability using a model 
based on stochastic differential 
equations 

C+ +, Python https://github.com/k-melnyk/ 
graphKKE 

Classification performance/ 
prediction metrics, CC, visual 
inspection of temporal patterns 

[78] To simulate real-world gene 
expression data, including the 
effects of additive biases 

Random covariance method 
(RCM), Cascade method 

Matlab https://github.com/evcphd/C- 
SHIFT 

Classification performance/ 
prediction metrics, CC 

[85] To enhance the prediction of 
disease phenotypes by generating 
synthetic data that better reflect the 
underlying biological mechanisms 

omicsGAN (uses two Wasserstein 
GANs with a gradient penalty 
(wGAN-GP)) 

Python https://github.com/ 
CompbioLabUCF/omicsGAN 

Classification performance/ 
prediction metrics, Student’s t-test, 
Kaplan-Meier Survival Plots and 
Log-Rank Test P-values, heat maps 
and bar graphs, comparing the 
empirical correlations and 
normalization performance 

[79] To identify the biological relevance 
of different variables in 
metabolomics, transcriptomics and 
proteomics data using synthetic 
data for validation 

Probabilistic modeling of the real 
data distributions given mass-to- 
charge ratios, peak intensities 
and noise levels 

R https://bitbucket.org/ 
cesaremov/ 
targetdecoy_mining/src/ 
master/ 

Classification performance/ 
prediction metrics 

[89] To identify and analyze gene 
expression profiles with distinct 
spatial patterns based on synthetic 
spatial transcriptomics data 

Image based (uses a black and 
white image to create a 
structured grid of gene expression 
values) and Turing based (uses 
mathematical models to simulate 
Turing patterns) 

Python https://github.com/almaan/ 
sepal 

Diffusion time, entropy, pattern 
families 

[80] To recover significant circadian and 
non-circadian trends from 
transcriptomic data using synthetic 
data for validation 

Random generation from uniform 
distributions with given 
parameters (e.g., slope, phase 
sight, growth rate, equilibrium 
shift) and value ranges 

R https://github.com/ 
delosh653/MOSAIC 

Distance between correlation 
matrices, heat maps to visualize the 
relative error between the 
correlation matrices of real and 
synthetic data after normalization 

[86] To analyze patterns and 
interactions of complex omics data 
(single-cell RNA-Seq data) using 
synthetic data to enhance the 
interpretability of biological 
processes 

Variational Autoencoders 
(VAEs), Deep Boltzmann 
Machines (DBMs), log-linear 
models 

Python https://github.com/ 
ssehztirom/Exploring- 
generative-deep-learning-for- 
omics-data-by-using-log- 
linear-models 

Discrimination ability between 
different cell types by varying the 
number of selected genes for 
annotation, DBI, Robustness Against 
Dichotomization, NMF) 

[81] To enable multi-insight data 
visualization using synthetic and 
simulated multi-omics 
data (mRNA expression, DNA 
methylation) related to ovarian and 
breast cancer 

Multivariate normal distribution 
to model methylation, gene and 
protein expression data 

R https://cran.r-project.org/ 
web/packages/InterSIM/ 
index.html 

Classification performance/ 
prediction metrics, Student’s t-test 

[76] To generate gene/protein co- 
expression networks specifically for 
tumor cells 

A power law degree distribution 
is used to randomly generate 
tumor and normal network 
topologies 

R https://github.com/petraf01/ 
TSNet 

Classification performance/ 
prediction metrics, standard 
deviation, Welch’s t-test 

[83] To improve the analysis of 
proteomics data, particularly in 

A simulated linear test (s-test) 
using adaptive Gauss-Hermite 

R, Matlab https://tvpham.github.io/ 
stest/ 

s-test, RMSE, Log-Likelihood Ratio 
Test, cV, Gauss-Hermite Quadrature 

(continued on next page) 
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interpretability of complex omics data patterns and interactions. 
The metrics which are used to measure the fidelity and quality of 

synthetic omics data include a wide range of performance-based, sta-
tistical, and visual techniques to ensure the synthetic data closely mir-
rors the real data. Performance metrics such as recall, precision, AUC 
(Area Under the Curve), adjusted rand index (ARI), overlap coefficient 
(OC), and variable importance in projection (VIP) are used to evaluate 
classification performance, clustering similarity, and feature signifi-
cance. The sensitivity to low signal-to-noise signals and the significance 
of pathway features are assessed to ensure robustness. Statistical tests 
like the Welch’s t-test, the standard deviation, the mean difference in 
scores, the Student’s t-test, the Kaplan-Meier survival plots, and the Log- 
Rank Test P-values provide comparative analysis between synthetic and 

real data distributions. Correlation coefficients are crucial for preserving 
linear relationships between variables. Visual inspection techniques, 
including heat maps and bar graphs, are often employed to compare 
empirical correlations and normalization performance. Advanced met-
rics, such as, the distance between correlation matrices, the Frobenius 
norm, the diffusion time, the entropy, and the pattern families are used 
to assess temporal and structural fidelity. Additional metrics like the 
Davies-Bouldin index (DBI), the robustness against dichotomization, 
and comparisons with non-negative matrix factorization (NMF) are 
deployed to measure clustering quality and robustness. The module 
detection score (MDS) is used to evaluate the detection of similar pat-
terns in the synthetic data. 

Table 5 (continued ) 

Study Scope Statistical approaches / 
algorithm (s) used 

Programming 
language/ 
Software 

Open-source codes or 
libraries used 

Metrics used to measure synthetic 
data fidelity/privacy 

experiments where technical 
variation plays a significant role 
due to small sample sizes 

quadrature to generate synthetic 
data 

[82] To evaluate a multi-omics 
heterogeneous data (methylation, 
gene expression and miRNA 
expression) analysis method using 
synthetic data for validation 

Statistical method using 
structured and random 
perturbations to mimic realistic 
complexities 

Python https://github.com/yangzi4/ 
iNMF 

MDS, Frobenius norm, Classification 
performance/ 
prediction metrics  

Table 6 
A summary of the scope, algorithms, programming languages, open-source codes or libraries, and metrics to measure synthetic data quality which are used by the 
studies that focus on the generation of synthetic multimodal data.  

Study Scope Statistical approaches / 
algorithm (s) used 

Programming 
language/ 
Software 

Open-source codes or 
libraries used 

Metrics used to measure 
synthetic data fidelity/ 
privacy 

[90] To generate synthetic patient-level data using 
a novel approach which integrates both static 
and longitudinal data 

Multimodal Neural Ordinary 
Differential Equations 
(MultiNODEs) 

Python https://github.com/SCAI- 
BIO/MultiNODEs 

JSD, CSA, MTC, 
Classification 
performance/ 
prediction metrics 

[91] To overcome the limitation of sparse 
annotated data in medical image registration 
by synthesizing multimodal 4D datasets (CT, 
CBCT, and MR images) 

CycleGAN - - MAE, SSIM, FSIM, EPR, 
EGR, NPS, CC, NM, HistCC, 
DSC 

[92] To generate synthetic free-text and tabular 
data in electronic health records (EHRs) using 
deep learning algorithms to enhance data 
sharing and privacy 

Encoder-decoder models based 
on LSTM RNNs 

Python https://github.com/ 
scotthlee/nrc 

Classification 
performance/ 
prediction metrics, COR 

[93] To generate missing MRI modalities (T1, T1ce, 
FLAIR) from existing T2 modality images to 
address the issue of incomplete multimodal 
datasets in clinical settings 

RAGAN, Modified U-Net, Multi- 
Branch Convolutional Neural 
Network 

Python tensorflow and keras libraries PSNR, SSIM, FSIM, EPR, 
EGR, NPS, NCC, DSC 

[94] To generate synthetic clinical, laboratory, 
genetic data mimicking real AML patient data 
from clinical trials 

CTAB-GAN+ and normalizing 
flows (NFlow) 

Python https://github.com/ 
waldemar93/ 
synthetic_data_pipeline 

Summary statistics, log- 
transformed correlation 
score, Kaplan-Meier- 
Divergence, PLC 

[95] Synthetic data generation of real-time 
multimodal electronic health and physical 
records (MHR, wearable biometric and 
behavioral data, and self-assessment surveys 
in the standard FHIR format) 

Temporally Correlated 
Multimodal GAN (TC- 
MultiGAN), Document Sequence 
Generator (DSG) 

Python https://github.com/ 
GATEKEEPER-OU/synthetic- 
data 

WD, KS test, JSD, PCD 

[96] MRI synchronous construction from a single 
T1-weight (T1) image for MRIgRT synthetic 
CT (sCT) image generation 

CMSG-Net compared against 
Pix2pix, CUT, TransUNet, 
ResViT, SE2SD-Net 

Python pytorch MAE, NRMSE, PSNR, SSIM 

[97] To synthesize pseudo-medical images between 
multimodal datasets (CBCT -> CT, CBCT ->
MRI, MRI -> CT) 

TGAN (cGAN and CycleGAN) Python tensorflow PSNR, SSIM, MAE, NMI, 
Dose Distribution and 
Gamma Analysis 

[98] To generate synthetic X-ray images and 
corresponding text reports 

End-to-end MultImodal X-ray 
genERative 
model (EMIXER) 

Python pytorch Classification 
performance/ 
prediction metrics, BLEU 
1-4, CIDEr Score, FID 

[99] To generate synthetic EHRs (including 
numerical and categorical data as well as text) 

PromptEHR (based on language 
models) compared against 
LSTM+MedGA, SynTEG, 
LSTM+MLP and GPT-2 

Python https://github.com/ 
RyanWangZf/PromptEHR 

Perplexity, Recall@ 10 and 
Recall@ 20, t-test, 
Wilcoxon test, Fisher’s 
exact test  
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3.2.5. Multimodal data 
Table 6 presents significant efforts that have been made in the 

literature towards synthetic multimodal data generation. Most of these 
efforts focused on the development of AI-based methods including the 
Multimodal Neural Ordinary Differential Equations (MultiNODEs) [90], 
the CycleGAN [91], LSTM-based encoder-decoder models [92], the 
RAGAN combined with Modified U-Net and Multi-Branch Convolutional 
Neural Network [93], the CTAB-GAN+ alongside normalizing flows 
(NFlow) [94], the Temporally Correlated Multimodal Generative 
Adversarial Networks (TC-MultiGAN) with Document Sequence Gener-
ators [95], CMSG-Net in comparison with Pix2pix [96], the TGAN [97] 
which combines cGAN and CycleGAN, an End-to-end MultImodal X-ray 
genERative model (EMIXER) [98], and the PromptEHR [99] compared 
against a suite of LSTM and GPT-2 based models. The applications of 
these methods are diverse and focused on enhancing the utility and 
privacy of healthcare data. Those include the generation of: (i) synthetic 
patient-level data that integrate static and longitudinal elements, (ii) 
multimodal 4D datasets for medical image registration, the generation 
of synthetic text and tabular data for electronic health records, (iii) 
missing MRI modalities to complete clinical datasets, mimicking real 
clinical trial data, (iv) real-time multimodal electronic health records, 
(v) MRI synchronous images from single modalities, (vi) pseudo-medical 
images between various imaging modalities, (vii) synthetic X-ray images 
and corresponding textual reports, and (viii) synthetic EHRs. These 
advancements underscore the pivotal role of synthetic data in improving 
data availability while ensuring privacy in healthcare settings. 

The metrics used to measure synthetic multimodal data fidelity and 
quality, in this context, include a diverse array of performance, statis-
tical, and visual measures. The Jensen-Shannon divergence (JSD) and 
the correlation structure analysis (CSA) are used to evaluate the distri-
butional similarities and correlations between synthetic and real data, 
while performance metrics like the AUC and the median trajectory 
comparison (MTC) provide insights into the overall predictive perfor-
mance and temporal alignment. The Mean Absolute Error (MAE), the 
structural Similarity Index Measure (SSIM), the Feature Similarity Index 
Measure (FSIM), the Edge Preservation Ratio (EPR), the Edge Genera-
tion Ratio (EGR), the Noise Power Spectrum (NPS), the Noise Magnitude 
(NM), the Histogram Correlation Coefficient (HistCC), and the Dice 
Similarity Coefficient (DSC) are used to assess various aspects of image 
quality and feature preservation. Classification/prediction performance 
metrics, such as, the recall, the F1 score, the accuracy, the crude odds 
ratios (COR), and the removal of Personally Identifiable Information 
(PII) are crucial to ensure both accuracy and privacy. The PSNR, the 
SSIM, the FSIM, and other noise-related metrics evaluate the visual and 
structural fidelity of synthetic data. Statistical measures, including 
mean, median, standard deviation, log-transformed correlation scores, 
and Kaplan-Meier-Divergence, alongside the Privacy Leakage Coeffi-
cient (PLC), provide an indication of data integrity and privacy. The 
Wasserstein distance, the KS test, and the distance pairwise correlation 
further measure the statistical similarity between datasets. Additional 
metrics like normalized mutual information (NMI), the dose distribu-
tion, the gamma analysis, the BLEU scores, the CIDEr score, the Fréchet 
Inception Distance (FID), the perplexity, and the recall@ 10 and 
recall@ 20 are also used to assess both the fidelity and utility of syn-
thetic data along with statistical tests, such as, the t-test, the Wilcoxon 
test, and the Fisher’s exact test. 

4. Discussion 

A thorough overview of the above-mentioned synthetic data gener-
ators utilized in the assessed studies are presented in Table 7. The table 
presents also the advantages and weaknesses of each methodological 
approach. The advantages and weaknesses of each synthetic data gen-
eration approach are defined on the basis of diverse criteria, such as, 
implementation simplicity, computational efficiency, flexibility in 
handling non-linear data, robustness in modeling complex 

dependencies, effectiveness in addressing class imbalance, and suit-
ability for the healthcare domain. The evaluations draw on insights from 
recent literature reviews and empirical studies, highlighting both the 
potential and limitations of various synthetic data generation methods 
[9,100–102]. In the case of probabilistic-based models, bootstrapping 
and MVND offer a straightforward implementation but might not cap-
ture complex data dependencies adequately. Vine Copula Models stand 
out for their ability to model intricate dependencies between variables, 
although they are complex to set up and interpret. SSM are well-suited 
for modeling sequential data and transitions, particularly in applica-
tions with clear state definitions, but are limited to such specific sce-
narios. Bayesian Networks are characterized by their powerful 
probabilistic modeling and inference capabilities which incorporate 
causal relationships, though they may struggle with big data and require 
complex structuring. In the field of omics, the SBM effectively models 
complex relationships and community structures yet demands precise 
parameter tuning and can be computationally demanding. Similarly, the 
RCM and the Cascade Method aim to simulate realistic gene expression 
data, including various biases, but might oversimplify and not capture 
all underlying biological complexities. 

Bayesian Models and Tree Ensembles are noted for their flexibility 
and effectiveness in handling non-linear data patterns. They excel at 
incorporating uncertainty into predictions, which is crucial for decision- 
making processes, where risk assessment is significant. However, their 
performance is restricted by the scale of the data, and they are compu-
tationally demanding, a fact that limits their use in real-time or resource- 
constrained environments. On the other hand, the Radial Basis Function 
(RBF)-based ANNs are designed to handle complex, non-linear in-
teractions within data. They offer a powerful mechanism for pattern 
recognition and classification tasks but require significant computa-
tional resources, particularly in tuning and training phases. The BGMM 
algorithm is efficient for clustering and for density estimation. It offers a 
probabilistic framework that helps to determine the number of compo-
nents (clusters) in a dataset. The primary challenges with BGMM 
involve: (i) the sensitivity to initial parameters, and (ii) the selection of 
the number of Gaussian components, which can significantly affect the 
model’s performance. 

The Probabilistic BNs, which are built on probabilistic reasoning, are 
excellent for causal inference and they are particularly useful in fields 
like epidemiology and genetics where understanding causal relation-
ships is crucial. The downside lies in their complexity in structure and 
computational demands, especially in the case of big data which may 
slow down the inference process. In omics studies, the SBM effectively 
models complex relationships and community structures within bio-
logical data. It requires precise parameter tuning and substantial 
computational power, which may limit its practical application in 
resource-constrained settings. In addition, the RCM and the Cascade 
method aim to simulate realistic gene expression data, considering 
various biases to enhance the realism of synthetic datasets. They might 
simplify complex biological interactions, but they might miss some un-
derlying dynamics. 

Table 7 also presents various DL-based generators, each designed to 
handle specific challenges. These methods leverage the capabilities of 
DL to learn complex patterns, and to generate synthetic data in an 
effective way. To this end, the ADS-GAN, the CTGAN, and other GAN- 
based variations are particularly effective for generating synthetic 
tabular data that preserve privacy. However, although they are known 
for their ability to handle high-dimensional data, they require hyper-
parameter tuning to avoid issues like mode collapse. The Enhanced 
Balancing GAN and the Attention-GAN are designed for imaging data to 
tackle crucial problems, such as, class imbalance and contrast 
enhancement during image synthesis. Although they are powerful for 
capturing intricate details, they may be prone to overfitting, especially 
in small datasets. The Contrastive Diffusion Model and the Flow-Based 
Network model excel in generating high-resolution and fine-grained 
images. They offer precise likelihood computation and are effective in 
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Table 7 
A thorough report of the advantages and weaknesses of the synthetic data generation algorithms deployed in the studies from Tables 1–6.  

No Algorithm [Indicative study] Type of 
method 

Supported 
type (s) of 
data 

Advantages Weaknesses Programming 
language 

1 Bootstrapping, MVND[13] Statistical Tabular Simple to implement, robust statistical 
foundations. 

May not capture complex dependencies 
in data. 

R, Python 

2 ADS-GAN[24] Deep 
learning 

Tabular Good for generating privacy-preserving 
synthetic data. 

Requires careful tuning to prevent 
mode collapse. 

Python 

3 Bayesian models[40] Machine 
learning 

Tabular Flexible, good for non-linear data, 
incorporates uncertainty. 

Computationally intensive, requires 
substantial data. 

R, Python 

4 Tree ensembles[16] Machine 
learning 

Tabular Combine multiple decision trees to 
improve the robustness of the 
generated data. 

Training can be computationally 
expensive, especially with large 
datasets and a high number of trees, 
leading to longer processing times and 
higher resource usage. 

R, Python 

5 RBF-based ANNs[103] Deep 
learning 

Tabular Suitable for generating high-quality 
synthetic data that accurately reflects 
the underlying patterns in the original 
dataset. 

Scalability issues as the number of data 
points increases, leading to higher 
computational costs and potential 
difficulties in managing large datasets. 

R, Python 

6 Vine Copula Models[39] Statistical Tabular Excellent at modeling complex 
dependencies between variables. 

Complex to set up and interpret. R 

7 BGMM[19] Machine 
learning 

Tabular Efficient at clustering and density 
estimation. 

Sensitive to the initialization and 
number of components. 

Python 

8 BGMMO-CE[19] Machine 
learning 

Tabular Optimized for computational 
efficiency. 

May lose some nuances of data 
complexity. 

Python 

9 TabularSimulationBase[27] Deep 
learning 

Tabular Versatile and capable of generating 
diverse synthetic datasets. 

Can be challenging to tune multiple 
models effectively. 

Python 

10 GaussianCopula[43] Statistical Tabular Effectively captures complex 
dependencies between multiple 
variables, allowing for a more accurate 
representation of multivariate 
relationships. 

Assumption of normality. Python 

11 CopulaGAN[27] Deep 
learning 

Tabular Leverages the flexibility of copula 
models to capture complex 
dependencies between variables and 
the generative power of GANs to 
produce realistic synthetic data. 

Training can be computationally 
intensive, requiring significant 
computational resources and time, 
especially for high-dimensional 
datasets. 

Python 

12 TVAE[47] Deep 
learning 

Tabular Specifically designed to model tabular 
data, capturing complex relationships. 

Training can be complex and 
computationally intensive, requiring 
careful tuning of hyperparameters and 
sufficient computational resources to 
achieve optimal performance. 

Python 

13 MedGAN[57] Deep 
learning 

Tabular It can generate realistic synthetic 
healthcare data, including high- 
dimensional EHRs. 

Need for substantial computational 
resources and expertise in fine-tuning 
GAN models. 

Python 

14 Tabular Preset[64] Deep 
learning 

Tabular, 
Radiomics 

Handles high-dimensional data well. High complexity and computational 
demand. 

Python 

15 Bayesian (hierarchical) 
Generalized Linear Models 
(hGLM)[37] 

Machine 
learning 

Tabular Excellent for data with hierarchical 
structures. 

Requires extensive computational 
resources. 

R 

16 State-transition Machines[41] Statistical Tabular Good for modeling sequential data and 
transitions. 

Limited to applications with clear state 
transitions. 

Java 

17 CGAN[25] Deep 
learning 

Tabular Advanced GAN models capable of 
generating highly realistic data. 

Training stability can be an issue. Python 

18 CTGAN[46] Deep 
learning 

Tabular Specialized for tabular data, helps 
mitigate class imbalance. 

Requires careful hyperparameter 
tuning. 

Python 

19 RadialGAN[47] Deep 
learning 

Tabular Cutting-edge methods for detailed 
synthetic data generation. 

Complex architectures that require 
significant training. 

Python 

20 TabDDPM[47] Deep 
learning 

Tabular Models the data generation process 
through a series of diffusion steps, 
capturing complex data distributions 
and dependencies accurately. 

Iterative nature of denoising diffusion 
models, requires significant 
computational resources and time to 
train, especially on large datasets. 

Python 

21 Bayesian Networks[38] Machine 
learning 

Tabular Powerful for probabilistic modeling 
and inference. 

Graph structure may be hard to specify 
with limited data. 

R, Software 

22 Sequential Decision Tree- 
Synthesizer[45] 

Deep 
learning 

Tabular Flexible and scalable to different data 
types. 

Complexity increases with data 
dimensionality. 

R, Python 

23 Enhanced Balancing GAN[48] Deep 
learning 

Imaging Specifically designed to address class 
imbalance in image data. 

Potentially limited to specific image- 
related tasks. 

Python 

24 Ensemble of Convolutional 
Neural Networks[55] 

Deep 
learning 

Imaging Effective for robust image analysis and 
out-of-distribution data. 

Requires significant computational 
power and data for training. 

Python 

25 Attention-GAN[49] Deep 
learning 

Imaging Capable of capturing intricate details in 
image synthesis. 

May be prone to overfitting on small 
datasets. 

Python 

26 Conditional Variational 
Autoencoder[52] 

Deep 
learning 

Imaging Combines the strengths of CVAE and 
GAN for improved generation. 

Complex to implement and tune. Python 

27 Contrastive Diffusion Model 
[53] 

Deep 
learning 

Imaging Excels at generating high-resolution, 
fine-grained images. 

Computationally demanding and 
requires tuning. 

Python 

(continued on next page) 
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Table 7 (continued ) 

No Algorithm [Indicative study] Type of 
method 

Supported 
type (s) of 
data 

Advantages Weaknesses Programming 
language 

28 Normalizing Flows[56] Deep 
learning 

Imaging Offers exact likelihood computation 
and invertibility. 

Requires careful design to ensure 
effective flow architectures. 

Python 

29 Dual-Discriminator Conditional 
GAN[34] 

Deep 
learning 

Imaging Enhances detail and realism in multi- 
resolution image fusion. 

May introduce high complexity and 
training difficulty. 

Python 

30 Vision Transformer[54] Deep 
learning 

Imaging Harnesses the power of transformers for 
image processing. 

Requires large datasets and extensive 
training time. 

Python 

31 Flow-Based Network[58] Deep 
learning 

Imaging Useful for enhancing visual quality in 
super-resolution tasks. 

Relatively new with potentially 
unexplored limitations. 

Python 

32 Task-Guided GAN[60] Deep 
learning 

Imaging Tailors the generation process to 
specific tasks, enhancing utility. 

Task-specific tuning can limit general 
application. 

Python 

33 Progressively Growing GANs 
[50] 

Deep 
learning 

Imaging Allows for gradual building of image 
resolution, enhancing detail. 

High resource consumption and 
complex training dynamics. 

Python 

34 Style Distribution GAN (SD- 
GAN)[51] 

Deep 
learning 

Imaging Focuses on transferring and blending 
diverse style features. 

Managing style variations effectively 
can be challenging. 

Python 

35 CS-CO (Self-Supervised 
Learning)[62] 

Deep 
learning 

Imaging Self-supervised learning method for 
histopathological images. 

Limited by the quality and variation of 
unlabeled data. 

Python 

36 SinGAN[57] Deep 
learning 

Imaging Capable of generating high-quality 
images from a single training image. 

May not perform well with complex 
scenes containing multiple objects. 

Python 

37 FastGAN[57] Deep 
learning 

Imaging Faster and more efficient training 
compared to traditional GANs. 

Limited research and applications 
compared to more established GAN 
models. 

Python 

38 PGGAN[57] Deep 
learning 

Imaging Can generate very high-resolution 
images (e.g., 1024 ×1024). 

Training can be computationally 
intensive and time-consuming. 

Python 

39 pix2pix[57] Deep 
learning 

Imaging Effective for image-to-image 
translation tasks. 

Can suffer from mode collapse, where 
the generator produces limited 
diversity in outputs. 

Python 

40 WGAN-GP[57] Deep 
learning 

Radiomics Effective at generating realistic samples 
and stable training. 

May require extensive computational 
resources. 

Python 

41 RadSynth[66] Deep 
learning 

Radiomics Specifically designed for radiomic 
image synthesis. 

Limited information available; 
potential specificity to tasks. 

Software 

42 SSSD-ECG[74] Deep 
learning 

Time-series Specifically tailored for synthetic ECG 
data generation. 

Specifically tailored for synthetic ECG 
data generation. 

Python 

43 DiffWave[74] Deep 
learning 

Time-series Particularly effective in generating 
high-fidelity synthetic data by 
leveraging the power of diffusion 
models to produce realistic and high- 
quality outputs. 

Requires significant computational 
power and expertise in deep learning 
and diffusion model techniques to 
achieve optimal results. 

Python 

44 WaveGAN[74] Deep 
learning 

Time-series Effective for applications that require 
realistic and coherent audio data 
generation, such as speech and music 
synthesis. 

Can be unstable and requires careful 
tuning of hyperparameters. 

Python 

45 Pulse2Pulse[74] Deep 
learning 

Time-series Tailored for generating realistic 
physiological pulse signals, such as ECG 
or PPG data. 

Requires extensive hyperparameter 
tuning and significant computational 
resources to accurately capture the 
nuances of physiological signals. 

Python 

46 Causal Recurrent Variational 
AutoEncoder (CRVAE)[75] 

Deep 
learning 

Time-series Excels at generating time-series data 
with underlying causality. 

Potentially complex to implement and 
requires substantial data. 

Python 

47 Guided Evolutionary 
Synthesizer (GES)[67] 

Deep 
learning 

Time-series Adaptable to different bias scenarios in 
time-series data. 

May require expert knowledge to 
configure and operate. 

Python 

48 TS-GAN[71] Deep 
learning 

Time-series Tailored for sensor- health data 
augmentation. 

Specific to sensor data, may not 
generalize across domains. 

Python 

49 Variational Autoencoder (VAE) 
[23] 

Deep 
learning 

Time-series Good for modeling distribution of data 
for simulation. 

Sometimes struggles with the quality of 
generated samples. 

Python 

50 Multi-label Time series GAN 
(MTGAN)[28] 

Deep 
learning 

Time-series Effective for handling time series data 
with multiple labels. 

Requires careful tuning and extensive 
dataset preparation. 

Python 

51 COmmon Source CoordInated 
GAN (COSCI-GAN)[72] 

Deep 
learning 

Time-series Innovative for generating multivariate 
time series. 

New approach with potential untested 
scenarios. 

Python 

52 HealthGAN, Wasserstein GAN, 
TimeGAN[73] 

Deep 
learning 

Time-series Advanced suite of models for 
comprehensive time series generation. 

High computational demand and 
complexity. 

Python 

53 Transformer-Based GAN (TTS- 
GAN)[29] 

Deep 
learning 

Time-series Utilizes transformer architectures for 
high fidelity synthesis. 

Requires extensive computational 
resources and data. 

Python 

54 HMM and Regression 
Algorithms[22] 

Machine 
learning 

Time-series Effective for capturing sequences and 
transitions in time series data. 

Complex integration of multiple 
modeling techniques. 

Python 

55 Randomly Selected and 
Randomly Permuted Enriched 
Pathways[87],[88] 

Statistical Omics Efficiently preserves the statistical 
distributions for semi-synthetic 
metabolomics data analysis. 

Limited to the statistical properties 
available in the data; may not 
introduce novel biological insights. 

R, Python 

56 Stochastic Block Model (SBM) 
[14] 

Probabilistic Omics Effectively models complex 
relationships and community structures 
within multi-omics data. 

Requires careful parameter tuning and 
can be computationally intensive. 

Matlab 

57 Time-evolving Graphs with 
Metastability[15] 

Probabilistic Omics Captures dynamic processes effectively, 
useful for studying temporal changes in 
microbiomes. 

Complex to implement and requires 
understanding of differential equations 
and graph theory. 

C+ +, Python 

(continued on next page) 
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Table 7 (continued ) 

No Algorithm [Indicative study] Type of 
method 

Supported 
type (s) of 
data 

Advantages Weaknesses Programming 
language 

58 Random Covariance Method 
(RCM)[78] 

Statistical Omics Simulates real-world gene expression 
data including various biases, 
enhancing realism. 

Potentially oversimplified, might not 
capture all underlying biological 
complexities. 

Matlab 

59 Cascade Method[78] Statistical Omics Effective in handling hierarchical or 
sequential processes by breaking down 
complex problems into simpler, smaller 
stages, which can improve the accuracy 
and manageability of modeling efforts. 

Errors can accumulate and propagate 
through the stages of the cascade, 
potentially leading to reduced overall 
accuracy and reliability in the final 
synthetic data generation if not 
carefully managed. 

Matlab 

60 omicsGAN[85] Deep 
learning 

Omics Utilizes advanced GAN technology to 
generate high-fidelity omics data, 
improving phenotype prediction. 

GANs can be challenging to train and 
require large amounts of data to avoid 
mode collapse. 

Python 

61 Image-based and Turing-based 
Methods[89] 

Deep 
learning 

Omics Innovative use of visual and 
mathematical models to simulate 
spatial gene expression patterns. 

May require specific expertise in both 
image processing and mathematical 
modeling. 

Python 

62 Random Generation from 
Uniform Distributions[80] 

Statistical Omics Simple and effective for generating data 
with specified statistical properties. 

Lacks complexity, might not be suitable 
for capturing non-linear relationships 
or interactions. 

R 

63 Deep Boltzmann Machines 
(DBMs)[86] 

Deep 
learning 

Omics Capable of capturing complex and high- 
dimensional data distributions. 

Computationally intensive and 
challenging due to the need for layer- 
wise pre-training and fine-tuning. 

Python 

64 Power Law Degree Distribution 
[76] 

Statistical Omics Useful for generating network 
topologies that mimic natural 
biological networks. 

Assumes network connectivity that 
follows a power law, which might not 
be appropriate for all types of 
biological data. 

R 

65 Simulated Linear Test (s-test) 
[83] 

Statistical Omics Adapts well to small sample sizes and 
can handle technical variations in 
proteomics data. 

Specific to scenarios with small sample 
sizes and may not generalize to larger 
or different datasets. 

R, Matlab 

66 Structured and Random 
Perturbations[82] 

Statistical Omics Allows for the generation of complex 
multi-omics data, enhancing the 
realism and applicability of synthetic 
datasets. 

Requires careful calibration to ensure 
the perturbations reflect realistic 
biological variability. 

Python 

67 Multimodal Neural Ordinary 
Differential Equations 
(MultiNODEs)[90] 

Deep 
learning 

Multimodal Integrates static and longitudinal data 
effectively for patient-level data 
synthesis. 

Requires careful configuration and 
understanding of both differential 
equations and neural networks. 

Python 

68 CycleGAN[91] Deep 
learning 

Multimodal Excellent for image-to-image 
translation tasks without needing 
paired data, useful in medical imaging. 

Can struggle with maintaining 
consistency in synthesized images 
where there is a large variation 
between input modalities. 

Python 

69 Encoder-decoder models based 
on LSTM RNNs[92] 

Deep 
learning 

Multimodal Effective for generating coherent and 
contextually relevant text and tabular 
data. 

May face challenges with very long 
sequences or extremely diverse 
datasets. 

Python 

70 RAGAN, Modified U-Net, Multi- 
Branch Convolutional Neural 
Network[93] 

Deep 
learning 

Multimodal Combines multiple advanced 
techniques to fill missing MRI 
modalities, enhancing dataset 
completeness. 

Complex to train and requires 
substantial computational resources. 

Python 

71 CTAB-GAN+ and Normalizing 
Flows (NFlow)[94] 

Deep 
learning 

Multimodal Allows for detailed control over the 
statistical properties of synthetic data, 
suitable for clinical and laboratory data 
simulation. 

Configuration and tuning can be 
complex, and understanding statistical 
underpinnings is essential. 

Python 

72 Temporally Correlated 
Multimodal Generative 
Adversarial Network (TC- 
MultiGAN)[95] 

Deep 
learning 

Multimodal Tailored for generating time-correlated 
multimodal datasets, particularly in 
dynamic and real-time environments. 

Can be challenging to synchronize 
multiple data streams effectively. 

Python 

73 Document Sequence Generator 
(DSG)[95] 

Deep 
learning 

Multimodal Particularly useful for tasks involving 
document and text data generation by 
capturing complex temporal 
dependencies within sequences. 

Requires substantial computational 
power and careful tuning of model 
parameters to achieve high-quality and 
coherent text generation. 

Python 

74 CMSG-Net[96] Deep 
learning 

Multimodal A robust set of tools for MRIgRT 
synthetic CT image generation, 
utilizing both established and cutting- 
edge techniques. 

Each model brings its own set of 
parameters and complexities, 
potentially complicating integration 
and optimization. 

Python 

75 TGAN[97] Deep 
learning 

Multimodal Enables effective synthesis of medical 
images between different modalities, 
addressing the scarcity of annotated 
medical images. 

Requires careful adjustment to ensure 
high fidelity and avoid artifacts 
common in synthesized images. 

Python 

76 End-to-end MultImodal X-ray 
generative model (EMIXER) 
[98] 

Deep 
learning 

Multimodal Specifically designed to generate 
synthetic X-ray images along with 
corresponding textual reports, 
enhancing data utility for training AI 
models. 

Integrating text and image generation 
smoothly can be technically 
challenging and requires extensive data 
for training. 

Python 

77 PromptEHR (based on language 
models)[99] 

Deep 
learning 

Multimodal Utilizes advanced language models to 
generate synthetic EHRs, enabling a 
high degree of realism and complexity. 

Balancing the generation of coherent 
and realistic EHRs while ensuring 
privacy can be difficult. 

Python  
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tasks like super-resolution, though they require significant computa-
tional resources and careful tuning to perform effectively. 

VAEs and Transformer-Based Models are widely used for modeling 
time-series and imaging data. Transformer-based models, like the Vision 
Transformers, utilize attention mechanisms to handle big data but they 
require extensive training time and resources. Multimodal approaches, 
such as, the CycleGAN, and the Encoder-decoder models are ideal for 
image-to-image translation tasks without the need of paired data. 
Furthermore, encoder-decoder models based on LSTM RNNs can effec-
tively generate coherent text and tabular data. Although these methods 
manage to synthesize data robustly across different modalities, they 
often struggle to maintain consistency or handle very long sequences. In 
medical imaging, models like TGAN and CMSG-Net are widely used to 
synthesize medical images that can address the scarcity of annotated 
images and thus enhance data utility for training AI models. In omics, 
methods like omicsGAN and Probabilistic Modeling utilize advanced 
GAN technology and probabilistic approaches to simulate complex 
biological data patterns, improving phenotype prediction but requiring 
large datasets to avoid overfitting. 

There is no doubt that synthetic data generation has been the point of 
interest in a broad spectrum of studies under the healthcare domain. 
However, they often require significant computational resources and 
configuration to optimize their performance and utility. The DL-based 
generators demonstrate a broad capability to generate, enhance, and 
analyze data in healthcare. They are marked by their ability to handle 
complex and high-dimensional data, but often at the cost of high 
computational demand and the need for extensive data and model 
tuning. The ML-based generators are robust and capable of modeling 
complex, non-linear relationships and are computational efficient. Their 
effectiveness often comes at the cost of increased computational re-
quirements and complexity in tuning and operation which necessitates 
their optimized implementation to maximize their potential by effec-
tively reducing resource constraints. Probabilistic models are charac-
terized by their ability to incorporate uncertainty into the modeling 
process. However, they often require careful design and parameter 
tuning and can be computationally intensive with limited scalability 
when handling complex data. 

In addition, synthetic data can significantly contribute to the prin-
ciples of trustworthy AI (TwAI) by enhancing privacy, fairness, and 
robustness. The generation of synthetic data that can “mimic” the real 
data without containing any personal or sensitive information, safe-
guards individuals’ privacy and mitigates the risks of data breaches. 
Synthetic data can also be used to correct biases which are present in 
real-world data (e.g. by populating unprivileged groups to reduce de-
mographic disparities), thereby promoting fairness and reducing 
discrimination in AI models. Moreover, synthetic data can enable the 
development of robust AI models by offering diverse and high-quality 
data for augmentation, as well as reducing vulnerabilities to adversa-
rial attacks. 

5. Conclusion and future directions 

The current review reveals a noteworthy and exponentially 
increasing number of studies which focus on the development and 
deployment of synthetic data generation technologies in healthcare 
across various data modalities, including tabular, imaging, radiomics, 
time-series, and omics. These studies make use of synthetic data to not 
only address privacy concerns but also to enhance the availability and 
diversity of the real data which is crucial for training AI-driven diag-
nostic and predictive models to improve patient outcomes and to sup-
port healthcare research. In addition, the current work presents the 
advantages and weaknesses of a variety of statistical, probabilistic, ML 
and DL based synthetic data generators. Great emphasis was given to 
reporting open-source tools to promote collaborative efforts within the 
research community to accelerate advancements in the field. 

The ability to synthesize tabular, imaging, radiomics, time-series, 

and omics data is essential for the development of robust AI models 
that can deliver more accurate and personalized healthcare solutions. 
Towards this direction, there has been a reported increase in the use of 
statistical and probabilistic methods, machine learning methods, and 
deep learning methods for generating synthetic data with improved fi-
delity and utility. For tabular data, statistical methods like MVND and 
bootstrapping, and probabilistic methods like Bayesian Models are 
widely used for generating synthetic distributions that preserve the 
underlying statistical properties of the real data. These methods are 
valuable for simulations in clinical trials and disease progression 
modeling. Machine learning methods, such as, GMM and tree ensembles 
can effectively capture complex patterns within the data, aiding in the 
generation of large-scale virtual populations for in silico clinical trials. 
DL-based methods like GANs and VAEs have been utilized to enhance 
privacy-conscious data generation, supporting applications such as 
clinical decision support and predictive modeling. For imaging data, 
CycleGAN and Enhanced Balancing GAN are instrumental in generating 
synthetic medical images, including functionalities to address minority 
classes in datasets or to perform style transfer between different imaging 
modalities. Conditional Variational Autoencoder (CVAE) and Attention- 
based GANs are deployed for specific tasks like image augmentation and 
high-resolution image synthesis, showcasing their adaptability in 
handling varied imaging data challenges. In radiomics data, WGAN-GP 
and CTGAN have been employed to generate synthetic radiomic data, 
which are crucial for training models to differentiate between various 
medical conditions using radiomic features. Copula GAN and Diffusion- 
based Models are cutting-edge methods enhancing the capacity to 
generate realistic and statistically coherent radiomic images and 
features. 

For time-series data, Wasserstein GAN with Gradient Penalty 
(WGAN-GP) and Multi-label Time Series GAN (MTGAN) offer robust 
solutions for generating realistic time-series data, crucial for medical 
applications where temporal dynamics are essential. Transformer-Based 
GANs and Causal Recurrent Variational Autoencoders (CR-VAEs) un-
derscore the evolution towards using complex architectures to maintain 
temporal dependencies and enhance the fidelity of synthetic time-series 
datasets. In omics data, Randomly Selected Pathways and Causal 
Feature Clusters are statistical-based methods which are used for 
generating synthetic omics data, which are vital for addressing issues 
like class imbalance and enhancing disease phenotype predictions. 
OmicsGAN and DBMs are advanced deep learning methods focusing on 
the generation of complex omics datasets, facilitating better in-
terpretations of intricate biological processes. As for multimodal data 
generation, MultiNODEs and TC-MultiGAN illustrate the integration of 
various data types through advanced neural networks, tackling chal-
lenges in multimodal data synthesis like generating comprehensive 
electronic health records or synthetic MRI images. CycleGAN and End- 
to-End Multimodal X-ray Generative Model (EMIXER) demonstrate the 
versatility of GANs in creating synthetic datasets that span multiple 
medical imaging modalities and integrating imaging with textual data. 

The variety of methods that has been discussed highlights a signifi-
cant advancement in the field of synthetic data generation, tailored to 
diverse needs across different types of medical data. Each algorithm or 
tool brings specific strengths to the table, addressing the challenges 
posed by the vast and varied data landscape in healthcare. Despite the 
advancements, there are ongoing challenges which are related to the 
quality, representativeness, and ethical use of synthetic data. Chal-
lenges, such as, data fidelity, potential biases introduced in the gener-
ated data, and the need for big, diverse data for AI model training remain 
critical areas for improvement. Future research in the field is needed to 
continue to explore these technologies, particularly focusing on 
improving the accuracy, reliability, and ethical aspects of synthetic data 
generation. This will not only enhance the robustness of the AI models 
but also ensure their applicability in real-world medical settings, ulti-
mately leading to better patient outcomes and more efficient healthcare 
systems. Furthermore, future research should focus on improving the 
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fidelity of synthetic data to ensure that they can mimic real-world data. 
This includes the development of more sophisticated models that can 
capture complex dependencies and interactions within the real data. 
Addressing biases in synthetic data generation is another critical factor 
to ensure fairness and equity in the AI models. Emphasis should be given 
to identifying and mitigating potential biases, particularly in data with 
underrepresented populations. As healthcare data continues to grow, 
scalable and efficient synthetic data generation methods are needed 
with reduced computational complexity while maintaining high-quality 
outcomes. Emphasis should also be given on the improvement and 
refinement of ethical guidelines and regulatory frameworks for the use 
of synthetic data in healthcare to ensure transparency in data generation 
and strict adherence to privacy standards. 
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